cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323118 a(n) = U_{n}(n) where U_{n}(x) is a Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 2, 15, 204, 3905, 96030, 2883167, 102213944, 4178507265, 193501094490, 10011386405999, 572335117886532, 35827847605137601, 2437406399741075126, 179059769134174484415, 14127079203550978667760, 1191321539697176278429697, 106935795565608726499866930
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, n], {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
  • PARI
    a(n) = polchebyshev(n, 2, n);
    
  • PARI
    a(n) = sum(k=0, n\2, (n^2-1)^k*n^(n-2*k)*binomial(n+1, 2*k+1));
    
  • PARI
    a(n) = sum(k=0, n, (2*n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

a(n) = Sum_{k=0..floor(n/2)} (n^2-1)^k*n^(n-2*k) * binomial(n+1,2*k+1).
a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Jan 05 2019
a(n) = Sum_{k=0..n} (2*n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n-2)^k * binomial(n+1+k,2*k+1). - Seiichi Manyama, Mar 03 2021

A349072 a(n) = T(n, 3*n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 3, 71, 2889, 164737, 12082575, 1083358151, 114812765781, 14040770918401, 1946133989077851, 301491888156044999, 51624542295308885793, 9681761035138427706241, 1973656779656041723763559, 434528364117341972641648967, 102755067271708508826774929325
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, T(n, k*n) ~ 2^(n-1) * k^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[n, 3*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 1, 3*n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevt
    def A349072(n): return chebyshevt(n,3*n) # Chai Wah Wu, Nov 08 2023

Formula

a(n) = cosh(n*arccosh(3*n)).
a(n) = ((3*n + sqrt(9*n^2-1))^n + (3*n - sqrt(9*n^2-1))^n)/2.
a(n) ~ 2^(n-1) * 3^n * n^n.

A349074 a(n) = U(3*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 4, 2911, 7997214, 57641556673, 867583274883920, 23630375698358890319, 1056918444955456528983706, 72383076947075470731692782081, 7200266529428094485775774835670652, 998383804974887102441600687728515247999, 186701261436825568741051032736345268517903734
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, U(k*n, n) ~ 2^(k*n) * n^(k*n).

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[3*n, n], {n, 0, 13}]
  • PARI
    a(n) = polchebyshev(3*n, 2, n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevu
    def A349074(n): return chebyshevu(3*n,n) # Chai Wah Wu, Nov 08 2023

Formula

For n>1, a(n) = ((n + sqrt(n^2-1))^(3*n+1) - (n - sqrt(n^2-1))^(3*n+1)) / (2*sqrt(n^2-1)).
a(n) ~ 2^(3*n) * n^(3*n).

A349075 a(n) = U(n, 2*n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 4, 63, 1704, 64769, 3168060, 189447551, 13389885712, 1092011153409, 100934312212404, 10426892198423999, 1190514147664125240, 148874434455514989313, 20235554722675691942764, 2970511463324707397138175, 468359315014627272862943520, 78938449723310515780367269889
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, 2*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 2, 2*n); \\ Michel Marcus, Nov 07 2021

Formula

a(n) = ((2*n + sqrt(4*n^2-1))^(n+1) - (2*n - sqrt(4*n^2-1))^(n+1)) / (2*sqrt(4*n^2-1)).
a(n) ~ 4^n * n^n.
Showing 1-4 of 4 results.