cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A323118 a(n) = U_{n}(n) where U_{n}(x) is a Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 2, 15, 204, 3905, 96030, 2883167, 102213944, 4178507265, 193501094490, 10011386405999, 572335117886532, 35827847605137601, 2437406399741075126, 179059769134174484415, 14127079203550978667760, 1191321539697176278429697, 106935795565608726499866930
Offset: 0

Views

Author

Seiichi Manyama, Jan 05 2019

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, n], {n, 0, 20}] (* Vaclav Kotesovec, Jan 05 2019 *)
  • PARI
    a(n) = polchebyshev(n, 2, n);
    
  • PARI
    a(n) = sum(k=0, n\2, (n^2-1)^k*n^(n-2*k)*binomial(n+1, 2*k+1));
    
  • PARI
    a(n) = sum(k=0, n, (2*n-2)^k*binomial(n+1+k, 2*k+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

a(n) = Sum_{k=0..floor(n/2)} (n^2-1)^k*n^(n-2*k) * binomial(n+1,2*k+1).
a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Jan 05 2019
a(n) = Sum_{k=0..n} (2*n-2)^(n-k) * binomial(2*n+1-k,k) = Sum_{k=0..n} (2*n-2)^k * binomial(n+1+k,2*k+1). - Seiichi Manyama, Mar 03 2021

A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 3, 209, 40391, 15003009, 9127651499, 8254109243953, 10393834843080975, 17391182043967249409, 37326390852372133364819, 99976027392046047055178001, 326887883645157139828711692503, 1281398359905415379814555044995201, 5932135472283024519893762690145006075
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[2*n, n], {n, 0, 15}]
  • PARI
    a(n) = polchebyshev(2*n, 2, n); \\ Michel Marcus, Nov 07 2021
    
  • Python
    from sympy import chebyshevu
    def A349073(n): return chebyshevu(n<<1,n) # Chai Wah Wu, Nov 08 2023

Formula

For n>1, a(n) = ((n + sqrt(n^2-1))^(2*n+1) - (n - sqrt(n^2-1))^(2*n+1)) / (2*sqrt(n^2-1)).
a(n) ~ 2^(2*n) * n^(2*n).

A349070 a(n) = T(3*n, n), where T(n, x) is the Chebyshev polynomial of the first kind.

Original entry on oeis.org

1, 1, 1351, 3880899, 28355806081, 429364731169925, 11731978174095849671, 525735133485219615486151, 36049049892983023583045990401, 3588952618789973294871796462342089, 497937643558017209960022199517744044999, 93156956377055671178035977181412016527566091
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, T(k*n, n) ~ 2^(k*n - 1) * n^(k*n).

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevT[3*n, n], {n, 0, 13}]
  • PARI
    a(n) = polchebyshev(3*n, 1, n); \\ Michel Marcus, Nov 07 2021

Formula

a(n) = cosh(3*n*arccosh(n)).
a(n) = ((n + sqrt(n^2-1))^(3*n) + (n - sqrt(n^2-1))^(3*n))/2.
a(n) ~ 2^(3*n-1) * n^(3*n).

A349076 a(n) = U(n, 3*n), where U(n, x) is the Chebyshev polynomial of the second kind.

Original entry on oeis.org

1, 6, 143, 5796, 330049, 24192090, 2168392031, 229755926568, 28093745899009, 3893604149949966, 603151411514453999, 103272803655639197580, 19367259480582106560193, 3947962681769909551857186, 869179946261864224288867775, 205535515565731164929726435280
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 07 2021

Keywords

Comments

In general, for k>=1, U(n, k*n) ~ 2^n * k^n * n^n.

Crossrefs

Programs

  • Mathematica
    Table[ChebyshevU[n, 3*n], {n, 0, 20}]
  • PARI
    a(n) = polchebyshev(n, 2, 3*n); \\ Michel Marcus, Nov 07 2021

Formula

a(n) = ((3*n + sqrt(9*n^2-1))^(n+1) - (3*n - sqrt(9*n^2-1))^(n+1)) / (2*sqrt(9*n^2-1)).
a(n) ~ 6^n * n^n.
Showing 1-4 of 4 results.