cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A322836 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where A(n,k) is Chebyshev polynomial of the first kind T_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 1, -1, 1, 2, 1, 0, 1, 3, 7, 1, 1, 1, 4, 17, 26, 1, 0, 1, 5, 31, 99, 97, 1, -1, 1, 6, 49, 244, 577, 362, 1, 0, 1, 7, 71, 485, 1921, 3363, 1351, 1, 1, 1, 8, 97, 846, 4801, 15124, 19601, 5042, 1, 0, 1, 9, 127, 1351, 10081, 47525, 119071, 114243, 18817, 1, -1
Offset: 0

Views

Author

Seiichi Manyama, Dec 28 2018

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 1,    2,     3,      4,      5,       6, ...
  -1, 1,    7,    17,     31,     49,      71, ...
   0, 1,   26,    99,    244,    485,     846, ...
   1, 1,   97,   577,   1921,   4801,   10081, ...
   0, 1,  362,  3363,  15124,  47525,  120126, ...
  -1, 1, 1351, 19601, 119071, 470449, 1431431, ...
		

Crossrefs

Mirror of A101124.
Main diagonal gives A115066.
Cf. A323182 (Chebyshev polynomial of the second kind).

Programs

  • Mathematica
    Table[ChebyshevT[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Amiram Eldar, Dec 28 2018 *)
  • PARI
    T(n,k) = polchebyshev(n,1,k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Dec 28 2018
    
  • PARI
    T(n, k) = round(cos(n*acos(k)));\\ Seiichi Manyama, Mar 05 2021
    
  • PARI
    T(n, k) = if(n==0, 1, n*sum(j=0, n, (2*k-2)^j*binomial(n+j, 2*j)/(n+j))); \\ Seiichi Manyama, Mar 05 2021

Formula

A(0,k) = 1, A(1,k) = k and A(n,k) = 2 * k * A(n-1,k) - A(n-2,k) for n > 1.
A(n,k) = cos(n*arccos(k)). - Seiichi Manyama, Mar 05 2021
A(n,k) = n * Sum_{j=0..n} (2*k-2)^j * binomial(n+j,2*j)/(n+j) for n > 0. - Seiichi Manyama, Mar 05 2021

A101125 Row sums of a Chebyshev number triangle.

Original entry on oeis.org

1, 1, 1, 4, 13, 49, 233, 1240, 7201, 45521, 311225, 2285116, 17909309, 149080865, 1312597361, 12180044528, 118740086369, 1212695223137, 12942512039697, 144018843991220, 1667526171728525, 20053044685823697, 250043383489271193
Offset: 0

Views

Author

Paul Barry, Dec 02 2004

Keywords

Comments

Row sums of A101124.

Programs

  • Mathematica
    Table[Sum[ChebyshevT[k, n-k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jan 20 2019 *)
  • PARI
    {a(n) = sum(k=0, n, polchebyshev(k, 1, n-k))} \\ Seiichi Manyama, Jan 20 2019

Formula

a(n)=sum{k=0..n, if(k

A228161 Number triangle associated to Chebyshev polynomials of the second kind.

Original entry on oeis.org

1, 0, 1, -1, 2, 1, 0, 3, 4, 1, 1, 4, 15, 6, 1, 0, 5, 56, 35, 8, 1, -1, 6, 209, 204, 63, 10, 1, 0, 7, 780, 1189, 496, 99, 12, 1, 1, 8, 2911, 6930, 3905, 980, 143, 14, 1, 0, 9, 10864, 40391, 30744, 9701, 1704, 195, 16, 1, -1, 10, 40545, 235416, 242047, 96030, 20305, 2716, 255, 18, 1
Offset: 0

Author

Jonny Griffiths, Aug 14 2013

Keywords

Comments

Compare the definition of U_n(x) with the definition of the Dirichlet kernel.
U_n(x) is defined as sin((n+1)*arccos(x))/sin(arccos(x)).
U_n(x) is a polynomial in x with integer coefficients for all n >=0.
The initial term is U_0(0).
The triangle is given here as U_0(0), U_1(0), U_1(1), U_2(0), U_2(1), U_2(2), U_3(0),....

Examples

			Triangle begins:
  1,
  0, 1,
 -1, 2,  1,
  0, 3,  4,  1,
  1, 4, 15,  6, 1,
  0, 5, 56, 35, 8, 1,
  ...
		

Crossrefs

Cf. A101124 (number triangle for Chebyshev polynomials of the first kind).
Cf. A133156 (coefficients of powers of x in U_n(x)).

Programs

  • Mathematica
    nn = 10; Flatten[Table[ChebyshevU[i - j, j], {i, 0, nn}, {j, 0, i}]] (* T. D. Noe, Aug 16 2013 *)

Formula

The polynomials can be computed with U_{n+1}(x) = 2*x*U_n(x) - U_{n-1}(x), U_{n+1}(x) = ((U_n(x))^2-1)/U_{n-1}(x), where in each case U_0(x) = 1; U_1(x) = 2*x.

Extensions

More terms from Michel Marcus, Feb 24 2025

A101126 Diagonal sums of a Chebyshev number triangle.

Original entry on oeis.org

1, 0, 0, 1, 3, 3, 8, 30, 117, 466, 1960, 8655, 40391, 200085, 1051888, 5844844, 34131049, 208344660, 1324262256, 8743620525, 59891078347, 425216195191, 3126418416440, 23778261543210, 186815245299549, 1513931016854598
Offset: 0

Author

Paul Barry, Dec 02 2004

Keywords

Comments

Diagonal sums of number triangle A101124.

Formula

a(n)=sum{k=0..floor(n/2), if(k

A228637 The number triangle associated with the polynomials V_n(x).

Original entry on oeis.org

1, -1, 1, -1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 5, 1, -1, 1, 41, 29, 7, 1, -1, 1, 153, 169, 55, 9, 1, 1, 1, 571, 985, 433, 89, 11, 1, 1, 1, 2131, 5741, 3409, 881, 131, 13, 1, -1, 1, 7953, 33461, 26839, 8721, 1561, 181, 15, 1
Offset: 0

Author

Jonny Griffiths, Aug 28 2013

Keywords

Comments

V(n) is the polynomial with integer coefficients in x given by cos((2n+1)(arccos(x)/2))/(arccos(x)/2). The triangle here is given by V_0(0), V_1(0), V_0(1), V_2(0), V_1(1), V_0(2), V_3(0), V_2(1), V_1(2), V_0(3), V_4(0),....

Examples

			V_0(x)=1, V_1(x)=2x-1, V_2(x)=4x^2-2x-1,  ...
		

Formula

The terms are given by the recurrence relation V_{n+1}(x) = 2xV_n(x)-V_{n-1}(x), V_0(x) = 1, V_1(x)=2x-1.

A228356 The triangle associated with the family of polynomials W_n(x).

Original entry on oeis.org

1, 1, 1, -1, 3, 1, -1, 5, 5, 1, 1, 7, 19, 7, 1, 1, 9, 71, 41, 9, 1, -1, 11, 265, 239, 71, 11, 1, -1, 13, 989, 1393, 559, 109, 13, 1, 1, 15, 3691, 8119, 4401, 1079, 155, 15, 1, 1, 17, 13775, 47321, 34649, 10681, 1847, 209, 17, 1
Offset: 0

Author

Jonny Griffiths, Aug 28 2013

Keywords

Comments

W_n(x) is the family of polynomials in x with integer coefficients given by W_n(x) = sin((2n+1)arccos(x)/2)/(sin(arccos(x)/2)).
These polynomials are intimately linked with the Chebyshev polynomials of the first and second kinds, and represent the polynomials associated with the Dirichlet kernel.

Examples

			The triangle is given here as W_0(0)=1, W_1(0)=1, W_0(1)=1, W_2(0)=-1, W_1(1)=3, W_0(2)=1, W_3(0)=-1, W_2(1)=5 ...
		

Programs

  • Mathematica
    W[0, ] = 1; W[1, x] := 2 x + 1; W[n_, x_] := W[n, x] = 2 x W[n - 1, x] - W[n - 2, x]; Table[W[n - x, x] , {n, 0, 9}, {x, 0, n}] // Flatten (* Jean-François Alcover, Jun 11 2017 *)

Formula

W_{n+1} = 2xW_n(x) - W_{n-1}, W_0(x)=1, W_1(x)=2x+1.
Showing 1-6 of 6 results.