cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A323182 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where T(n,k) is Chebyshev polynomial of the second kind U_{n}(x), evaluated at x=k.

Original entry on oeis.org

1, 1, 0, 1, 2, -1, 1, 4, 3, 0, 1, 6, 15, 4, 1, 1, 8, 35, 56, 5, 0, 1, 10, 63, 204, 209, 6, -1, 1, 12, 99, 496, 1189, 780, 7, 0, 1, 14, 143, 980, 3905, 6930, 2911, 8, 1, 1, 16, 195, 1704, 9701, 30744, 40391, 10864, 9, 0, 1, 18, 255, 2716, 20305, 96030, 242047, 235416, 40545, 10, -1
Offset: 0

Views

Author

Seiichi Manyama, Jan 06 2019

Keywords

Examples

			Square array begins:
   1, 1,    1,     1,      1,      1,       1, ...
   0, 2,    4,     6,      8,     10,      12, ...
  -1, 3,   15,    35,     63,     99,     143, ...
   0, 4,   56,   204,    496,    980,    1704, ...
   1, 5,  209,  1189,   3905,   9701,   20305, ...
   0, 6,  780,  6930,  30744,  96030,  241956, ...
  -1, 7, 2911, 40391, 242047, 950599, 2883167, ...
		

Crossrefs

Mirror of A228161.
Columns 0-19 give A056594, A000027(n+1), A001353(n+1), A001109(n+1), A001090(n+1), A004189(n+1), A004191, A007655(n+2), A077412, A049660(n+1), A075843(n+1), A077421, A077423, A097309, A097311, A097313, A029548, A029547, A144128(n+1), A078987.
Main diagonal gives A323118.
Cf. A179943, A322836 (Chebyshev polynomial of the first kind).

Programs

  • PARI
    T(n,k)  = polchebyshev(n, 2, k);
    matrix(7, 7, n, k, T(n-1,k-1)) \\ Michel Marcus, Jan 07 2019
    
  • PARI
    T(n, k) = sum(j=0, n, (2*k-2)^j*binomial(n+1+j, 2*j+1)); \\ Seiichi Manyama, Mar 03 2021

Formula

T(0,k) = 1, T(1,k) = 2 * k and T(n,k) = 2 * k * T(n-1,k) - T(n-2,k) for n > 1.
T(n, k) = Sum_{j=0..n} (2*k-2)^j * binomial(n+1+j,2*j+1). - Seiichi Manyama, Mar 03 2021

A228637 The number triangle associated with the polynomials V_n(x).

Original entry on oeis.org

1, -1, 1, -1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 5, 1, -1, 1, 41, 29, 7, 1, -1, 1, 153, 169, 55, 9, 1, 1, 1, 571, 985, 433, 89, 11, 1, 1, 1, 2131, 5741, 3409, 881, 131, 13, 1, -1, 1, 7953, 33461, 26839, 8721, 1561, 181, 15, 1
Offset: 0

Views

Author

Jonny Griffiths, Aug 28 2013

Keywords

Comments

V(n) is the polynomial with integer coefficients in x given by cos((2n+1)(arccos(x)/2))/(arccos(x)/2). The triangle here is given by V_0(0), V_1(0), V_0(1), V_2(0), V_1(1), V_0(2), V_3(0), V_2(1), V_1(2), V_0(3), V_4(0),....

Examples

			V_0(x)=1, V_1(x)=2x-1, V_2(x)=4x^2-2x-1,  ...
		

Crossrefs

Formula

The terms are given by the recurrence relation V_{n+1}(x) = 2xV_n(x)-V_{n-1}(x), V_0(x) = 1, V_1(x)=2x-1.

A228356 The triangle associated with the family of polynomials W_n(x).

Original entry on oeis.org

1, 1, 1, -1, 3, 1, -1, 5, 5, 1, 1, 7, 19, 7, 1, 1, 9, 71, 41, 9, 1, -1, 11, 265, 239, 71, 11, 1, -1, 13, 989, 1393, 559, 109, 13, 1, 1, 15, 3691, 8119, 4401, 1079, 155, 15, 1, 1, 17, 13775, 47321, 34649, 10681, 1847, 209, 17, 1
Offset: 0

Views

Author

Jonny Griffiths, Aug 28 2013

Keywords

Comments

W_n(x) is the family of polynomials in x with integer coefficients given by W_n(x) = sin((2n+1)arccos(x)/2)/(sin(arccos(x)/2)).
These polynomials are intimately linked with the Chebyshev polynomials of the first and second kinds, and represent the polynomials associated with the Dirichlet kernel.

Examples

			The triangle is given here as W_0(0)=1, W_1(0)=1, W_0(1)=1, W_2(0)=-1, W_1(1)=3, W_0(2)=1, W_3(0)=-1, W_2(1)=5 ...
		

Crossrefs

Programs

  • Mathematica
    W[0, ] = 1; W[1, x] := 2 x + 1; W[n_, x_] := W[n, x] = 2 x W[n - 1, x] - W[n - 2, x]; Table[W[n - x, x] , {n, 0, 9}, {x, 0, n}] // Flatten (* Jean-François Alcover, Jun 11 2017 *)

Formula

W_{n+1} = 2xW_n(x) - W_{n-1}, W_0(x)=1, W_1(x)=2x+1.
Showing 1-3 of 3 results.