Jonny Griffiths has authored 5 sequences.
A228356
The triangle associated with the family of polynomials W_n(x).
Original entry on oeis.org
1, 1, 1, -1, 3, 1, -1, 5, 5, 1, 1, 7, 19, 7, 1, 1, 9, 71, 41, 9, 1, -1, 11, 265, 239, 71, 11, 1, -1, 13, 989, 1393, 559, 109, 13, 1, 1, 15, 3691, 8119, 4401, 1079, 155, 15, 1, 1, 17, 13775, 47321, 34649, 10681, 1847, 209, 17, 1
Offset: 0
The triangle is given here as W_0(0)=1, W_1(0)=1, W_0(1)=1, W_2(0)=-1, W_1(1)=3, W_0(2)=1, W_3(0)=-1, W_2(1)=5 ...
-
W[0, ] = 1; W[1, x] := 2 x + 1; W[n_, x_] := W[n, x] = 2 x W[n - 1, x] - W[n - 2, x]; Table[W[n - x, x] , {n, 0, 9}, {x, 0, n}] // Flatten (* Jean-François Alcover, Jun 11 2017 *)
A228637
The number triangle associated with the polynomials V_n(x).
Original entry on oeis.org
1, -1, 1, -1, 1, 1, 1, 1, 3, 1, 1, 1, 11, 5, 1, -1, 1, 41, 29, 7, 1, -1, 1, 153, 169, 55, 9, 1, 1, 1, 571, 985, 433, 89, 11, 1, 1, 1, 2131, 5741, 3409, 881, 131, 13, 1, -1, 1, 7953, 33461, 26839, 8721, 1561, 181, 15, 1
Offset: 0
V_0(x)=1, V_1(x)=2x-1, V_2(x)=4x^2-2x-1, ...
A228565
Triangle read by rows: coefficients of descending powers of the polynomial V(n,x) = cos((2n+1)(arccos(x)/2))/cos(arccos(x)/2), n >= 0.
Original entry on oeis.org
1, 2, -1, 4, -2, -1, 8, -4, -4, 1, 16, -8, -12, 4, 1, 32, -16, -32, 12, 6, -1, 64, -32, -80, 32, 24, -6, -1, 128, -64, -192, 80, 80, -24, -8, 1, 256, -128, -448, 192, 240, -80, -40, 8, 1, 512, -256, -1024, 448, 672, -240, -160, 40, 10, -1, 1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1, 2048, -1024, -5120, 2304, 4608, -1792, -1792, 560, 280, -60, -12, 1, 4096, -2048, -11264, 5120, 11520, -4608, -5376, 1792, 1120, -280, -84, 12, 1
Offset: 0
V(0,x) = 1, V(1,x) = 2x-1, V(2,x) = 4x^2-2x-1, V(3,x) = 8x^3 -4x^2 - 4x + 1, V(4,x) = 16x^4 - 8x^3 - 12x^2 + 4x + 1, V(5,x) = 32x^5 - 16x^4 - 32x^3 + 12x^2 + 6x - 1, V(6,x) =64x^6 - 32x^5 - 80x^4 + 32x^3 + 24x^2 - 6x - 1, ...
Triangle begins:
1;
2, -1;
4, -2, -1;
8, -4, -4, 1;
16, -8, -12, 4, 1;
32, -16, -32, 12, 6, -1;
64, -32, -80, 32, 24, -6, -1;
128, -64, -192, 80, 80, -24, -8, 1;
256, -128, -448, 192, 240, -80, -40, 8, 1;
512, -256, -1024, 448, 672, -240, -160, 40, 10, -1;
1024, -512, -2304, 1024, 1792, -672, -560, 160, 60, -10, -1;
...
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC, 2002.
-
A228565 := proc(n,k)
local t,Vn,x ;
t := arccos(x) ;
Vn := cos((n+1/2)*t)/cos(t/2) ;
coeftayl(%,x=0,n-k) ;
end proc:
for n from 0 to 10 do
for k from 0 to n do
printf("%d,",A228565(n,k)) ;
end do:
printf("\n") ;
end do: # R. J. Mathar, Mar 12 2014
-
V[n_] := Cos[(2*n + 1)*(ArcCos[x]/2)]/Cos[ArcCos[x]/2];
row[n_] := CoefficientList[V[n] + O[x]^(n + 1), x] // Reverse;
Table[row[n], {n, 0, 12}] // Flatten (* Jean-François Alcover, Nov 20 2017 *)
A228161
Number triangle associated to Chebyshev polynomials of the second kind.
Original entry on oeis.org
1, 0, 1, -1, 2, 1, 0, 3, 4, 1, 1, 4, 15, 6, 1, 0, 5, 56, 35, 8, 1, -1, 6, 209, 204, 63, 10, 1, 0, 7, 780, 1189, 496, 99, 12, 1, 1, 8, 2911, 6930, 3905, 980, 143, 14, 1, 0, 9, 10864, 40391, 30744, 9701, 1704, 195, 16, 1, -1, 10, 40545, 235416, 242047, 96030, 20305, 2716, 255, 18, 1
Offset: 0
Triangle begins:
1,
0, 1,
-1, 2, 1,
0, 3, 4, 1,
1, 4, 15, 6, 1,
0, 5, 56, 35, 8, 1,
...
Cf.
A101124 (number triangle for Chebyshev polynomials of the first kind).
Cf.
A133156 (coefficients of powers of x in U_n(x)).
-
nn = 10; Flatten[Table[ChebyshevU[i - j, j], {i, 0, nn}, {j, 0, i}]] (* T. D. Noe, Aug 16 2013 *)
A180870
D(n, x) is the Dirichlet kernel sin((n+1/2)x)/sin(x/2). The triangle gives in row n the coefficients of descending powers of x of the polynomial D(n, arccos(x)).
Original entry on oeis.org
1, 2, 1, 4, 2, -1, 8, 4, -4, -1, 16, 8, -12, -4, 1, 32, 16, -32, -12, 6, 1, 64, 32, -80, -32, 24, 6, -1, 128, 64, -192, -80, 80, 24, -8, -1, 256, 128, -448, -192, 240, 80, -40, -8, 1, 512, 256, -1024, -448, 672, 240, -160, -40, 10, 1
Offset: 0
The triangle T(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 4 2 -1
3: 8 4 -4 -1
4: 16 8 -12 -4 1
5: 32 16 -32 -12 6 1
6: 64 32 -80 -32 24 6 -1
7: 128 64 -192 -80 80 24 -8 -1
8: 256 128 -448 -192 240 80 -40 -8 1
9: 512 256 -1024 -448 672 240 -160 -40 10 1
10: 1024 512 -2304 -1024 1792 672 -560 -160 60 10 -1
... reformatted - _Wolfdieter Lang_, Jul 26 2014
Recurrence: T(4,2) = (1 + 1)*T(3,2) - T(3,1) = 2*(-4) - 4 = -12. T(4,3) = 0*T(3,3) - (-1)*T(3,2) = T(3,2) = -4. - _Wolfdieter Lang_, Jul 30 2014
- J. C. Mason and D. C. Handscomb, Chebyshev polynomials, Chapman and Hall/CRC 2002.
-
ogf := (1 + t)/(1 - 2*x*t + t^2):
ser := simplify(series(ogf, t, 12)): tc := n -> coeff(ser, t, n):
Trow := n -> local k; seq(coeff(tc(n), x, n-k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Oct 07 2024
-
row(n) = {if (n==0, return([1])); f = 2*x+1; for (k = 2, n, for (i = 1, (k-1)\2 + 1, f += (-1)^(i+1)*(binomial(k-i, i-1)*(2*x)^(k-2*i+2) - 2*binomial(k-1-i, i-1)*(2*x)^(k-2*i)););); Vec(f);} \\ Michel Marcus, Jul 18 2014
Missing term in sequence corrected by
Paul Curtz, Dec 31 2011
Edited (name reformulated, Wikipedia link added) by
Wolfdieter Lang, Jul 26 2014
Comments