cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A101124 Number triangle associated to Chebyshev polynomials of first kind.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 0, 1, 2, 1, 1, 1, 7, 3, 1, 0, 1, 26, 17, 4, 1, -1, 1, 97, 99, 31, 5, 1, 0, 1, 362, 577, 244, 49, 6, 1, 1, 1, 1351, 3363, 1921, 485, 71, 7, 1, 0, 1, 5042, 19601, 15124, 4801, 846, 97, 8, 1, -1, 1, 18817, 114243, 119071, 47525, 10081, 1351, 127, 9, 1, 0, 1, 70226, 665857, 937444, 470449, 120126, 18817, 2024, 161
Offset: 0

Views

Author

Paul Barry, Dec 02 2004

Keywords

Examples

			As a number triangle, rows begin:
  {1},
  {0,1},
  {-1,1,1},
  {0,1,2,1},
  ...
As a square array, rows begin
   1, 1,  1,   1,    1, ...
   0, 1,  2,   3,    4, ...
  -1, 1,  7,  17,   31, ...
   0, 1, 26,  99,  244, ...
   1, 1, 97, 577, 1921, ...
		

Crossrefs

Row sums are A101125.
Diagonal sums are A101126.
Main diagonal gives A115066.
Mirror of A322836.
Cf. A053120.

Programs

  • Mathematica
    T[n_, k_] := SeriesCoefficient[x^k (1 - k x)/(1 - 2 k x + x^2), {x, 0, n}];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 12 2017 *)

Formula

Number triangle S(n, k)=T(n-k, k), k
Columns have g.f. x^k(1-kx)/(1-2kx+x^2).
Also, square array if(n=0, 1, T(n, k)) read by antidiagonals.

A323613 Antidiagonal sums of A323182.

Original entry on oeis.org

1, 1, 2, 8, 27, 105, 492, 2584, 14893, 93625, 637342, 4663856, 36455959, 302825585, 2661650680, 24662914640, 240141823417, 2450053360913, 26125165902810, 290487741343352, 3361177509359859, 40396577112990745, 503447944487902244, 6496090993661295784, 86660903426459105701
Offset: 0

Author

Seiichi Manyama, Jan 20 2019

Keywords

Examples

			a(1) = 0 + 1 = 1.
a(2) = -1 + 2 + 1 = 2.
a(3) = 0 + 3 + 4 + 1 = 8.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[ChebyshevU[k, n - k], {k, 0, n}], {n, 0, 30}] (* Vaclav Kotesovec, Jan 20 2019 *)
  • PARI
    {a(n) = sum(k=0, n, polchebyshev(k, 2, n-k))}

A341576 a(n) = Sum_{k=0..n} U_k((n-k)/2) where U_n(x) is a Chebyshev polynomial of the 2nd kind.

Original entry on oeis.org

1, 1, 1, 3, 7, 16, 46, 149, 520, 1977, 8136, 35878, 168501, 838945, 4409957, 24385913, 141412615, 857611640, 5426144190, 35739397739, 244573978100, 1735854397529, 12757309001220, 96941738970956, 760649367654461, 6155205917196409, 51308394497243469
Offset: 0

Author

Seiichi Manyama, Mar 08 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := Sum[ChebyshevU[k, (n - k)/2], {k, 0, n}]; Array[a, 27, 0] (* Amiram Eldar, Mar 08 2021 *)
  • PARI
    a(n) = sum(k=0, n, polchebyshev(k, 2, (n-k)/2));
    
  • Python
    from fractions import Fraction
    from sympy import chebyshevu
    def A341576(n): return sum(chebyshevu(k,Fraction(n-k,2)) for k in range(n+1)) # Chai Wah Wu, Nov 08 2023
Showing 1-3 of 3 results.