A370259
a(n) = (T(n,n+1) - 1)/n^3 for n >= 1, where T(n,x) is the n-th Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 2, 9, 75, 961, 16900, 380689, 10498005, 343323841, 13007560326, 560789801881, 27125634729375, 1455389462287489, 85805768251305992, 5515372218107327521, 383931652351786775721, 28778117694539885440129, 2311202255914842794592010, 198009919900727928789497641, 18027589454633803742596931571
Offset: 1
-
seq( simplify( (ChebyshevT(n, n+1) - 1)/n^3 ), n = 1..20);
-
Array[(ChebyshevT[#, #+1]-1)/#^3 &, 20] (* Paolo Xausa, Mar 14 2024 *)
-
from sympy import chebyshevt
def A370259(n): return (chebyshevt(n,n+1)-1)//n**3 # Chai Wah Wu, Mar 13 2024
Original entry on oeis.org
1, 3, 31, 617, 18529, 748859, 38149567, 2348482961, 169641143873, 14071599763379, 1318414335714015, 137720427724123513, 15871136311527376801, 2000355821099358166891, 273735526097742996298111, 40419227378551955037029921, 6405616571975691389276400257
Offset: 0
-
A370259 := n -> simplify( (ChebyshevT(n, n+1) - 1)/n^3 ):
seq(sqrt(A370259(2*n+1)), n = 0..20);
-
Table[Sqrt[(ChebyshevT[k, k + 1] - 1)/k^3], {k, 1, 40, 2}] (* Paolo Xausa, Jul 24 2024 *)
A343259
a(n) = 2 * T(n,n/2) where T(n,x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
2, 1, 2, 18, 194, 2525, 39202, 710647, 14760962, 345946302, 9034502498, 260219353691, 8195978831042, 280256592535933, 10340256951198914, 409468947059131650, 17322711762013765634, 779742677038695037937, 37210469265847998489922, 1876572071974094803391179
Offset: 0
-
Table[2*ChebyshevT[n, n/2], {n, 1, 20}] (* Amiram Eldar, Apr 09 2021 *)
-
a(n) = 2*polchebyshev(n, 1, n/2);
-
a(n) = round(2*cos(n*acos(n/2)));
-
a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-2)^k*binomial(n+k, 2*k)/(n+k)));
A370261
a(n) = sqrt(A370259(2*n)/(n+1)) for n >= 1.
Original entry on oeis.org
1, 5, 65, 1449, 46561, 1968525, 103565057, 6531391313, 480749649601, 40482981221781, 3840053099665729, 405275779792031225, 47113209228513626017, 5982545638922153790749, 823992221632687352744961, 122360935410018418223907489, 19489013519781051891806113153
Offset: 1
-
A370259 := n -> simplify( (ChebyshevT(n, n+1) - 1)/n^3 ):
seq(sqrt(A370259(2*n)/(n+1)), n = 1..20);
-
Table[Sqrt[(ChebyshevT[2*n, 2*n + 1] - 1)/(2*n)^3/(n + 1)], {n, 20}] (* Paolo Xausa, Jul 24 2024 *)
-
from math import isqrt
from sympy import chebyshevt
def A370261(n): return isqrt((chebyshevt((m:=n<<1),m+1)-1)//((n+1)*m**3)) # Chai Wah Wu, Mar 13 2024
A342206
a(n) = T(n,n+2) where T(n,x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
1, 3, 31, 485, 10081, 262087, 8193151, 299537289, 12545596801, 592479412811, 31154649926687, 1805486216133613, 114342125644787041, 7857107443850071695, 582268591681887560191, 46292552162781456490001, 3930448770533424343942657
Offset: 0
-
Table[ChebyshevT[n, n + 2], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
-
a(n) = polchebyshev(n, 1, n+2);
-
a(n) = round(cos(n*acos(n+2)));
-
a(n) = if(n==0, 1, n*sum(k=0, n, (2*n+2)^k*binomial(n+k, 2*k)/(n+k)));
A343260
a(n) = 2 * T(n,(n+1)/2) where T(n,x) is a Chebyshev polynomial of the first kind.
Original entry on oeis.org
2, 2, 7, 52, 527, 6726, 103682, 1874888, 38925119, 912670090, 23855111399, 687808321212, 21687295069442, 742397047217294, 27420344506901023, 1086932029484351248, 46027034321342899967, 2073668380220713167378, 99042070146811639444802
Offset: 0
-
Table[2*ChebyshevT[n, (n+1)/2], {n, 0, 18}] (* Amiram Eldar, Apr 09 2021 *)
-
a(n) = 2*polchebyshev(n, 1, (n+1)/2);
-
a(n) = round(2*cos(n*acos((n+1)/2)));
-
a(n) = if(n==0, 2, 2*n*sum(k=0, n, (n-1)^k*binomial(n+k, 2*k)/(n+k)));
A342207
a(n) = U(n,n+1) where U(n,x) is a Chebyshev polynomial of the second kind.
Original entry on oeis.org
1, 4, 35, 496, 9701, 241956, 7338631, 262184896, 10783446409, 501827040100, 26069206375211, 1495427735314800, 93885489910449901, 6403169506981578436, 471427031236487965199, 37265225545829174607616, 3147895910861898495432209
Offset: 0
-
Table[ChebyshevU[n, n + 1], {n, 0, 16}] (* Amiram Eldar, Mar 05 2021 *)
-
a(n) = polchebyshev(n, 2, n+1);
-
a(n) = sum(k=0, n, (2*n)^(n-k)*binomial(2*n+1-k, k));
-
a(n) = sum(k=0, n, (2*n)^k*binomial(n+1+k, 2*k+1));
Showing 1-7 of 7 results.
Comments