A219276 Numbers n such that T_4(n) is prime, where T_4(x) = 8x^4 - 8x^2 + 1 is the fourth Chebyshev polynomial (of the first kind).
2, 3, 5, 8, 10, 14, 17, 19, 31, 32, 34, 35, 39, 48, 50, 51, 53, 54, 59, 61, 73, 76, 78, 84, 88, 90, 97, 101, 102, 105, 107, 110, 121, 126, 128, 134, 135, 139, 143, 144, 146, 152, 153, 158, 167, 171, 172, 178, 180, 184, 186, 187, 189, 201, 202, 203, 205, 207
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A144131.
Programs
-
Maple
filter:= n -> isprime(8*n^4 - 8*n^2+1): select(filter, [$1..300]); # Robert Israel, Jan 22 2020
-
Mathematica
lst={}; Do[If[PrimeQ[ChebyshevT [4, n]], AppendTo[lst, n]], {n, 10^3}]; lst
-
PARI
is(n)=isprime(polchebyshev(4,1,n)) \\ Charles R Greathouse IV, May 29 2013
Comments