cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A219279 Primes of the form ChebyshevT[16,n].

Original entry on oeis.org

708158977, 21293229181234844660737, 21260958687099552174028801, 46453251497945783267589121, 64576903826545426454350012417, 26475257580698876650533675799180801, 352799899930156494230719582325262337, 423592588581159655917184553299009537
Offset: 1

Views

Author

Michel Lagneau, Nov 17 2012

Keywords

Comments

ChebyshevT[16,x] is the 16th Chebyshev polynomial of the first kind evaluated at x.
The corresponding values n are in A219278.

Crossrefs

Cf. A219278.

Programs

  • Mathematica
    lst={}; Do[p=Abs[ChebyshevT[16, n]]; If[PrimeQ[p], AppendTo[lst, p]], {n, 10^3}]; lst
    Select[ChebyshevT[16,Range[250]],PrimeQ] (* Harvey P. Dale, May 06 2013 *)

A219280 Smallest prime of the form ChebyshevT[2^n, x].

Original entry on oeis.org

2, 7, 97, 665857, 708158977, 150038171394905030432003281854339710977
Offset: 0

Views

Author

Michel Lagneau, Nov 17 2012

Keywords

Comments

ChebyshevT[2^n, x] is the 2^n th Chebyshev polynomial of the first kind evaluated at x.
The corresponding numbers x are {2, 2, 2, 3, 2, 8, 164, 29, ...}.
a(7) = T(128, 29) = 2518958009…2561281 contains 226 decimal digits.

Examples

			T(1, x) = x => a(0) = T(1,2) = 2 ;
T(2, x) = 2x^2 - 1 => a(1) = T(2, 2) = 7 ;
T(4, x) = 8x^4 - 8x^2 + 1 => a(2) = T(4,2) = 97.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • C. W. Jones, J. C. P. Miller, J. F. C. Conn and R. C. Pankhurst, Tables of Chebyshev polynomials, Proc. Roy. Soc. Edinburgh. Sect. A. 62, (1946), 187-203.

Crossrefs

Programs

  • Mathematica
    Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; ChebyshevT[2^n,k], {n, 0, 7}]

A219281 Smallest number k such that ChebyshevT[2^n, k] is prime.

Original entry on oeis.org

2, 2, 2, 3, 2, 8, 164, 29, 60, 213, 181, 652
Offset: 0

Views

Author

Michel Lagneau, Nov 17 2012

Keywords

Comments

ChebyshevT[2^n,x] is the 2^n th Chebyshev polynomial of the first kind evaluated at x.

Examples

			T(1, x) = x => T(1,2) = 2 is prime => a(0) = 2;
T(2, x) = 2x^2 - 1 => T(2, 2) = 7 is prime => a(1) = 2;
T(4, x) = 8x^4 - 8x^2 + 1 => T(4,2) = 97 is prime => a(2) = 2.
		

Crossrefs

Programs

  • Maple
    for n from 0 to 11 do
      P:= unapply(orthopoly[T](2^n,x),x):
      for k from 1 do if isprime(P(k)) then A[n]:= k; break fi od
    od:
    seq(A[n],n=0..11); # Robert Israel, Aug 13 2018
  • Mathematica
    Table[k = 0; While[!PrimeQ[ChebyshevT[2^n,k]], k++]; k, {n, 0, 7}]

Extensions

a(10) and a(11) from Robert Israel, Aug 13 2018
Showing 1-3 of 3 results.