Original entry on oeis.org
2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158, 2702, 3330, 4048, 4862, 5778, 6802, 7940, 9198, 10582, 12098, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 32672, 35838, 39202, 42770, 46548, 50542, 54758, 59202, 63880
Offset: 0
-
List([0..40], n -> n^3+6*n^2+9*n+2); # G. C. Greubel, Nov 29 2018
-
[n^3+6*n^2+9*n+2: n in [0..40]]; // Vincenzo Librandi, Sep 22 2016
-
seq(sum(n^2-3, k=1..n), n=2..40); # Zerinvary Lajos, Jan 28 2008
seq ((n^3)-3*n, n=2..40); # Zerinvary Lajos, Jun 17 2008
-
LinearRecurrence[{4,-6,4,-1}, {2,18,52,110}, 40] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
Table[n^3 + 6 n^2 + 9 n + 2, {n, 0, 40}] (* Bruno Berselli, Jan 10 2015 *)
-
vector(40, n, n--; n^3+6*n^2+9*n+2) \\ G. C. Greubel, Nov 29 2018
-
[(n^3+6*n^2+9*n+2) for n in range(40)] # G. C. Greubel, Nov 29 2018
A152811
a(n) = 2*(n^2 + 2*n - 2).
Original entry on oeis.org
2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1
a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs, Vol. 0(1) (2024), Article 5.
- Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin., Vol. 89(1) (2024), pp. 167-178.
- J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J. Comb. Optim., Vol. 27 (2014), pp. 271-291.
- I. Gutman and K. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., No. 50 (2004), pp. 83-92.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
-
[ 2*(n^2+2*n-2) : n in [1..47] ];
-
Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
-
{m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}
A177944
Array T(n,m) = 1/Beta(n+1, m+1) - n - m read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 26, 16, 1, 1, 25, 55, 55, 25, 1, 1, 36, 99, 134, 99, 36, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 64, 244, 496, 622, 496, 244, 64, 1, 1, 81, 351, 831, 1251, 1251, 831, 351, 81, 1
Offset: 0
The array starts in row n=0, column m=0 as:
1,....1,....1,....1,.....1,.....1,.....1,.....1,
1,....4,....9,...16,....25,....36,....49,....64, A000290
1,....9,...26,...55,....99,...161,...244,...351, A154560
1,...16,...55,..134,...273,...496,...831,..1310,
1,...25,...99,..273,...622,..1251,..2300,..3949,
1,...36,..161,..496,..1251,..2762,..5533,.10284,
1,...49,..244,..831,..2300,..5533,.12000,.24011,
1,...64,..351,.1310,..3949,.10284,.24011,.51466,
-
Clear[t, n];
t[n_, m_] = 1/Beta[n + 1, m + 1] - n - m;
a = Table[Table[t[n, m], {m, 0, 10}], {n, 0, 10}];
Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
Flatten[%]
Examples written in natural order, closed formula for antidiag. sum - The Assoc. Eds. of the OEIS, Nov 03 2010
Showing 1-3 of 3 results.
Comments