cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058794 Row 3 of A007754.

Original entry on oeis.org

2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158, 2702, 3330, 4048, 4862, 5778, 6802, 7940, 9198, 10582, 12098, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 32672, 35838, 39202, 42770, 46548, 50542, 54758, 59202, 63880
Offset: 0

Views

Author

Christian G. Bower, Dec 02 2000

Keywords

Comments

For n >= 2, a(n) is the number of ways a triangle with side length n-1 can be completely surrounded by diamonds. See illustrations in Links. - Craig Knecht, Oct 08 2024

Crossrefs

Programs

Formula

a(n) = n^3 + 6*n^2 + 9*n + 2.
G.f.: 2*(1 + 5*x - 4*x^2 + x^3)/(1-x)^4. - Colin Barker, Jan 10 2012
a(n) = (n + 2)*(n^2 + 4*n + 1) = 2*A154560(n). - Bruno Berselli, Jan 10 2015
E.g.f.: (2 + 16*x + 9*x^2 + x^3)*exp(x). - G. C. Greubel, Nov 29 2018

A152811 a(n) = 2*(n^2 + 2*n - 2).

Original entry on oeis.org

2, 12, 26, 44, 66, 92, 122, 156, 194, 236, 282, 332, 386, 444, 506, 572, 642, 716, 794, 876, 962, 1052, 1146, 1244, 1346, 1452, 1562, 1676, 1794, 1916, 2042, 2172, 2306, 2444, 2586, 2732, 2882, 3036, 3194, 3356, 3522, 3692, 3866, 4044, 4226, 4412, 4602, 4796, 4994
Offset: 1

Views

Author

Vincenzo Librandi, Dec 17 2008

Keywords

Comments

Positive numbers k such that 2*k + 12 is a square. [Comment simplified by Zak Seidov, Jan 14 2009]
Sequence gives positive x values of solutions (x,y) to the Diophantine equation 2*x^3 + 12*x^2 = y^2. Corresponding y values are 8*A154560. There are three other solutions: (0,0), (-4,8) and (-6,0).
From a(2) onwards, third subdiagonal of triangle defined in A144562.
Also, nonnegative numbers of the form (m+sqrt(-3))^2 + (m-sqrt(-3))^2. - Bruno Berselli, Mar 13 2015
a(n-1) is the maximum Zagreb index over all maximal 2-degenerate graphs with n vertices. The extremal graphs are 2-stars, so the bound also applies to 2-trees. (The Zagreb index of a graph is the sum of the squares of the degrees over all vertices of the graph.) - Allan Bickle, Apr 11 2024

Examples

			a(4) = 2*(4^2 + 2*4 - 2) = 44 = 2*22 = 2*A028872(5); 2*44^3 + 12*44^2 = 193600 = 440^2 is a square.
The graph K_3 has 3 degree 2 vertices, so a(3-1) = 3*4 = 12.
		

Crossrefs

Cf. A028872 (n^2-3), A154560 ((n+3)^2*n/2+1), A144562 (triangle T(m,n) = 2m*n+m+n-1).
Cf. A002378, A152811, A371912 (Zagreb indices of maximal k-degenerate graphs).

Programs

  • Magma
    [ 2*(n^2+2*n-2) : n in [1..47] ];
    
  • Mathematica
    Table[2*n*(n + 2) - 4, {n, 50}] (* Paolo Xausa, Aug 08 2024 *)
  • PARI
    {m=4700; for(n=1, m, if(issquare(2*n^3+12*n^2), print1(n, ",")))}

Formula

G.f.: 2*x*(1 + 3*x - 2*x^2)/(1-x)^3. [corrected by Elmo R. Oliveira, Nov 17 2024]
a(n) = 2*A028872(n+1).
a(n) = a(n-1) + 4*n + 2 for n > 1, a(1)=2.
From Amiram Eldar, Mar 02 2023: (Start)
Sum_{n>=1} 1/a(n) = 1/3 - cot(sqrt(3)*Pi)*Pi/(4*sqrt(3)).
Sum_{n>=1} (-1)^(n+1)/a(n) = -(2 + sqrt(3)*Pi*cosec(sqrt(3)*Pi))/12. (End)
From Elmo R. Oliveira, Nov 17 2024: (Start)
E.g.f.: 2*(exp(x)*(x^2 + 3*x - 2) + 2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

Extensions

Edited and extended by Klaus Brockhaus, Jan 12 2009

A177944 Array T(n,m) = 1/Beta(n+1, m+1) - n - m read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 26, 16, 1, 1, 25, 55, 55, 25, 1, 1, 36, 99, 134, 99, 36, 1, 1, 49, 161, 273, 273, 161, 49, 1, 1, 64, 244, 496, 622, 496, 244, 64, 1, 1, 81, 351, 831, 1251, 1251, 831, 351, 81, 1
Offset: 0

Views

Author

Roger L. Bagula, May 15 2010

Keywords

Comments

Antidiagonal sums are 1, 2, 6, 20, 60, 162, 406, 968, 2232, 5030, ... = (d+1)*(2^d-d).
The values appear to be related to binomial(n,m)^2.

Examples

			The array starts in row n=0, column m=0 as:
1,....1,....1,....1,.....1,.....1,.....1,.....1,
1,....4,....9,...16,....25,....36,....49,....64, A000290
1,....9,...26,...55,....99,...161,...244,...351, A154560
1,...16,...55,..134,...273,...496,...831,..1310,
1,...25,...99,..273,...622,..1251,..2300,..3949,
1,...36,..161,..496,..1251,..2762,..5533,.10284,
1,...49,..244,..831,..2300,..5533,.12000,.24011,
1,...64,..351,.1310,..3949,.10284,.24011,.51466,
		

Programs

  • Mathematica
    Clear[t, n];
    t[n_, m_] = 1/Beta[n + 1, m + 1] - n - m;
    a = Table[Table[t[n, m], {m, 0, 10}], {n, 0, 10}];
    Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}];
    Flatten[%]

Formula

T(n,m) = Gamma(n+m+2)/(Gamma(n+1)*Gamma(m+1)) - n - m = T(m,n).

Extensions

Examples written in natural order, closed formula for antidiag. sum - The Assoc. Eds. of the OEIS, Nov 03 2010
Showing 1-3 of 3 results.