cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A007754 Array (a frieze pattern) defined by a(n,k) = (a(n-1,k)*a(n-1,k+1) - 1) / a(n-2,k+1), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 5, 2, 1, 4, 11, 18, 7, 1, 5, 19, 52, 85, 33, 1, 6, 29, 110, 301, 492, 191, 1, 7, 41, 198, 751, 2055, 3359, 1304, 1, 8, 55, 322, 1555, 5898, 16139, 26380, 10241, 1, 9, 71, 488, 2857, 13797, 52331, 143196, 234061, 90865, 1, 10, 89, 702
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2000

Keywords

Comments

Let u be a sequence with u(0)=p, u(1)=q, and u(i)^(i+k) = u(i-1)*u(i+1). Then u(n)= q^a(n-1,k)/p^a(n-2,k+1). - Example for k=1, u(5)=q^7/p^18 and for k=2, u(5)=q^85/p^52. - Olivier Gérard, Sep 19 2016

Examples

			Array begins:
  1   1   1   1   1    1    1   1 ...
    1   2   3   4   5    6    7 ...
      1   5  11  19   29   41 ...
        2  18  52  110  198 ...
          7  85  301  751 ...
		

References

Crossrefs

Row 0-3: A000012, A000027(n+1), A028387, A058794-A058796. Columns 0-2: A058797-A058799.
Main diagonal gives A099933.

Formula

a(n, k) = (n+k)*a(n-1, k)-a(n-2, k) with a(0, k)=1 and a(-1, k)=0. - Henry Bottomley, Feb 28 2001
a(n, k) = Pi*(BesselJ(n+k+1, 2)*BesselY(k, 2) - BesselY(n+k+1, 2)*BesselJ(k, 2)). - Alec Mihailovs (alec(AT)mihailovs.com), Aug 21 2005
Column asymptotics (i.e. for fixed k and n -> infinity): a(n, k) ~ BesselJ(k, 2)*(n+k)!. - Alec Mihailovs (alec(AT)mihailovs.com), Aug 21 2005

Extensions

More terms from Christian G. Bower, Dec 02 2000

A024040 a(n) = 4^n - n^4.

Original entry on oeis.org

1, 3, 0, -17, 0, 399, 2800, 13983, 61440, 255583, 1038576, 4179663, 16756480, 67080303, 268397040, 1073691199, 4294901760, 17179785663, 68719371760, 274877776623, 1099511467776, 4398046316623, 17592185810160, 70368743897823, 281474976378880, 1125899906451999
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (1-6*x+3*x^2+23*x^3+48*x^4+3*x^5)/((1-4*x)*(1-x)^5).
E.g.f.: exp(4*x)-(x^4+6*x^3+7*x^2+x)*exp(x). - Robert Israel, Dec 29 2014

A024054 a(n) = 5^n - n^5.

Original entry on oeis.org

1, 4, -7, -118, -399, 0, 7849, 61318, 357857, 1894076, 9665625, 48667074, 243891793, 1220331832, 6102977801, 30516818750, 152586842049, 762938033268, 3814695376057, 19073483852026, 95367428440625
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

G.f.: (-6*x^6 - 123*x^5 - 319*x^4 - 44*x^3 + 6*x^2 + 7*x - 1)/((x - 1)^6*(5*x - 1)). - Harvey P. Dale, Oct 15 2014
a(0)=1, a(1)=4, a(2)=-7, a(3)=-118, a(4)=-399, a(5)=0, a(6)=7849, a(n) = 11*a(n-1) - 45*a(n-2) + 95*a(n-3) - 115*a(n-4) + 81*a(n-5) - 31*a(n-6) + 5*a(n-7). - Harvey P. Dale, Oct 15 2014

A024068 a(n) = 6^n - n^6.

Original entry on oeis.org

1, 5, -28, -513, -2800, -7849, 0, 162287, 1417472, 9546255, 59466176, 361025495, 2173796352, 13055867207, 78356634560, 470173593951, 2821093130240, 16926635307167, 101559922656192, 609359692964615, 3656158376062976, 21936950554611735, 131621703728887232, 789730222905566927
Offset: 0

Views

Author

Keywords

Comments

6^n in the formula can be removed (for example) with the following Maple code: "with(gfun): rec1:={u1(0)=1,u1(n+1)=6*u1(n)}: rec2:={u2(n)=n^6}: poltorec(u1(n)-u2(n),[rec1,rec2],u1(n),u2(n)],a(n));". This yields a polynomial recurrence: {a(n+1)-5*n^6+6*n^5+15*n^4+20*n^3+15*n^2-6*a(n)+6*n+1, a(0) = 1} that can further be transformed into a linear recurrence with constant coefficients. - Georg Fischer, Feb 23 2021

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 13*a(n-1) - 63*a(n-2) + 161*a(n-3) - 245*a(n-4) + 231*a(n-5) - 133*a(n-6) + 43*a(n-7) - 6*a(n-8) for n > 7.
G.f.: (5*x^7 + 348*x^6 + 1734*x^5 + 1545*x^4 + 5*x^3 - 30*x^2 - 8*x + 1)/((x - 1)^7*(6*x - 1)). (End)

Extensions

More terms from Georg Fischer, Feb 23 2021

A121670 a(n) = n^3 - 3*n.

Original entry on oeis.org

0, -2, 2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158, 2702, 3330, 4048, 4862, 5778, 6802, 7940, 9198, 10582, 12098, 13752, 15550, 17498, 19602, 21868, 24302, 26910, 29698, 32672, 35838, 39202, 42770, 46548, 50542, 54758, 59202, 63880, 68798, 73962
Offset: 0

Views

Author

Gary W. Adamson, Aug 14 2006

Keywords

Comments

Previous name was: Real part of (n + i)^3, companion to A080663.
Reversing the order of terms in (n + i)^3 to (1 + ni)^3 generates the terms of A080663. E.g, A080663(4) = 47 since (1 + 4i)^3 = (-47 - 52i). Or, (n + i)^3 = (a(n) + A080663(a)i) and (1 + ni)^3 = (-A080663(n) - a(n)i).
Also, numbers n such that the polynomial x^6 - n*x^3 + 1 is reducible. - Ralf Stephan, Oct 24 2013

Examples

			a(4) = 52 since (4 + i)^3 = (52 + 47i); where 47 = A080663(4).
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-2 x (x^2 - 5 x + 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 11 2014 *)
    Table[n^3-3n,{n,0,60}] (* or *) LinearRecurrence[{4,-6,4,-1},{0,-2,2,18},60] (* Harvey P. Dale, Nov 30 2021 *)
  • PARI
    Vec(-2*x*(x^2-5*x+1)/(x-1)^4 + O(x^100)); \\ Colin Barker, Oct 16 2013

Formula

a(n) = Re( (n + i)^3 ).
a(n) = n^3-3*n. a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4). G.f.: -2*x*(x^2-5*x+1) / (x-1)^4. - Colin Barker, Oct 16 2013
a(n)^2 = A028872(n)^3 + 3*A028872(n)^2 for n>1. - Bruno Berselli, May 03 2018
a(n) = A058794(n-2) for n>1. - Altug Alkan, May 03 2018

Extensions

Terms corrected, new name, and more terms from Colin Barker, Oct 16 2013

A024082 7^n-n^7.

Original entry on oeis.org

1, 6, -79, -1844, -13983, -61318, -162287, 0, 3667649, 35570638, 272475249, 1957839572, 13805455393, 96826261890, 678117659345, 4747390650568, 33232662134145, 232630103648534, 1628412985690417, 11398894291501404, 79792265017612001, 558545862282195466
Offset: 0

Views

Author

Keywords

Comments

a(20)=79792265017612001 and a(24)=191581231375979942977 are primes, thus terms of A123206. - M. F. Hasler, Aug 20 2014

Crossrefs

Programs

Formula

G.f.: (1-9*x-85*x^2-407*x^3+5991*x^4+15665*x^5+8245*x^6+831*x^7+8*x^8)/((1-7*x)*(1-x)^8). - Bruno Berselli, May 16 2011

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A024096 a(n) = 8^n - n^8.

Original entry on oeis.org

1, 7, -192, -6049, -61440, -357857, -1417472, -3667649, 0, 91171007, 973741824, 8375575711, 68289495040, 548940083167, 4396570722048, 35181809198207, 281470681743360, 2251792837927807, 18014387489521408, 144115171092292831
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [8^n-n^8: n in [0..25]]; // Vincenzo Librandi, May 16 2011
    
  • Mathematica
    Table[8^n - n^8, {n, 0, 20}] (* or *) LinearRecurrence[ {17, -108, 372, -798, 1134, -1092, 708, -297, 73, -8}, {1, 7, -192, -6049, -61440, -357857, -1417472, -3667649, 0, 91171007}, 20] (* Harvey P. Dale, Oct 10 2013 *)
  • PARI
    a(n)=8^n-n^8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1 - 10*x - 203*x^2 - 2401*x^3 + 18851*x^4 + 109207*x^5 + 120743*x^6 + 34061*x^7 + 1984*x^8 + 7*x^9) / ((1-8*x)*(1-x)^9). - Bruno Berselli, May 16 2011
a(0)=1, a(1)=7, a(2)=-192, a(3)=-6049, a(4)=-61440, a(5)=-357857, a(6)=-1417472, a(7)=-3667649, a(8)=0, a(9)=91171007; for n>9, a(n) = 17*a(n-1) - 108*a(n-2) + 372*a(n-3) - 798*a(n-4) + 1134*a(n-5) - 1092*a(n-6) + 708*a(n-7) - 297*a(n-8) + 73*a(n-9) - 8*a(n-10). - Harvey P. Dale, Oct 10 2013

A024110 a(n) = 9^n - n^9.

Original entry on oeis.org

1, 8, -431, -18954, -255583, -1894076, -9546255, -35570638, -91171007, 0, 2486784401, 29023111918, 277269756129, 2531261328956, 22856131408177, 205852688735274, 1852951469375105, 16677063111790072, 150094436937708753
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 19*a(n-1) - 135*a(n-2) + 525*a(n-3) - 1290*a(n-4) + 2142*a(n-5) - 2478*a(n-6) + 2010*a(n-7) - 1125*a(n-8) + 415*a(n-9) - 91*a(n-10) + 9*a(n-11) for n > 10.
G.f.: (-10*x^10 - 4507*x^9 - 131015*x^8 - 779378*x^7 - 1317686*x^6 - 637664*x^5 - 43448*x^4 + 10210*x^3 + 448*x^2 + 11*x - 1)/((x - 1)^10*(9*x - 1)). (End)

A024124 a(n) = 10^n - n^10.

Original entry on oeis.org

1, 9, -924, -58049, -1038576, -9665625, -59466176, -272475249, -973741824, -2486784401, 0, 74062575399, 938082635776, 9862141508151, 99710745345024, 999423349609375, 9998900488372224, 99997984006099551, 999996429532773376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 21*a(n-1) - 165*a(n-2) + 715*a(n-3) - 1980*a(n-4) + 3762*a(n-5) - 5082*a(n-6) + 4950*a(n-7) - 3465*a(n-8) + 1705*a(n-9) - 561*a(n-10) + 111*a(n-11) - 10*a(n-12) for n > 11.
G.f.: (9*x^11 + 10140*x^10 + 477332*x^9 + 4504245*x^8 + 12648018*x^7 + 11793648*x^6 + 3241104*x^5 + 23538*x^4 - 37875*x^3 - 948*x^2 - 12*x + 1)/((x - 1)^11*(10*x - 1)). (End)

A024152 a(n) = 12^n - n^12.

Original entry on oeis.org

1, 11, -3952, -529713, -16756480, -243891793, -2173796352, -13805455393, -68289495040, -277269756129, -938082635776, -2395420006033, 0, 83695120256591, 1227224552173568, 15277275236695743, 184602783918325760
Offset: 0

Views

Author

Keywords

Comments

Conjecture: satisfies a linear recurrence having signature (25, -234, 1222, -4147, 9867, -17160, 22308, -21879, 16159, -8866, 3510, -949, 157, -12). - Harvey P. Dale, Jan 27 2019
The conjecture above is correct. From the general formula for {a(n)} we can see that the roots for the characteristic polynomial are one 12 and thirteen 1's, so the characteristic polynomial is (x - 12)*(x - 1)^13 = x^14 - 25*x^13 + 234*x^12 - ... + 12, with corresponding recurrence coefficients 25, -234, ..., -12. - Jianing Song, Jan 28 2019

Crossrefs

Programs

Showing 1-10 of 15 results. Next