cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A024082 7^n-n^7.

Original entry on oeis.org

1, 6, -79, -1844, -13983, -61318, -162287, 0, 3667649, 35570638, 272475249, 1957839572, 13805455393, 96826261890, 678117659345, 4747390650568, 33232662134145, 232630103648534, 1628412985690417, 11398894291501404, 79792265017612001, 558545862282195466
Offset: 0

Views

Author

Keywords

Comments

a(20)=79792265017612001 and a(24)=191581231375979942977 are primes, thus terms of A123206. - M. F. Hasler, Aug 20 2014

Crossrefs

Programs

Formula

G.f.: (1-9*x-85*x^2-407*x^3+5991*x^4+15665*x^5+8245*x^6+831*x^7+8*x^8)/((1-7*x)*(1-x)^8). - Bruno Berselli, May 16 2011

Extensions

More terms from Stefan Steinerberger, Apr 08 2006

A024096 a(n) = 8^n - n^8.

Original entry on oeis.org

1, 7, -192, -6049, -61440, -357857, -1417472, -3667649, 0, 91171007, 973741824, 8375575711, 68289495040, 548940083167, 4396570722048, 35181809198207, 281470681743360, 2251792837927807, 18014387489521408, 144115171092292831
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [8^n-n^8: n in [0..25]]; // Vincenzo Librandi, May 16 2011
    
  • Mathematica
    Table[8^n - n^8, {n, 0, 20}] (* or *) LinearRecurrence[ {17, -108, 372, -798, 1134, -1092, 708, -297, 73, -8}, {1, 7, -192, -6049, -61440, -357857, -1417472, -3667649, 0, 91171007}, 20] (* Harvey P. Dale, Oct 10 2013 *)
  • PARI
    a(n)=8^n-n^8 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (1 - 10*x - 203*x^2 - 2401*x^3 + 18851*x^4 + 109207*x^5 + 120743*x^6 + 34061*x^7 + 1984*x^8 + 7*x^9) / ((1-8*x)*(1-x)^9). - Bruno Berselli, May 16 2011
a(0)=1, a(1)=7, a(2)=-192, a(3)=-6049, a(4)=-61440, a(5)=-357857, a(6)=-1417472, a(7)=-3667649, a(8)=0, a(9)=91171007; for n>9, a(n) = 17*a(n-1) - 108*a(n-2) + 372*a(n-3) - 798*a(n-4) + 1134*a(n-5) - 1092*a(n-6) + 708*a(n-7) - 297*a(n-8) + 73*a(n-9) - 8*a(n-10). - Harvey P. Dale, Oct 10 2013

A024110 a(n) = 9^n - n^9.

Original entry on oeis.org

1, 8, -431, -18954, -255583, -1894076, -9546255, -35570638, -91171007, 0, 2486784401, 29023111918, 277269756129, 2531261328956, 22856131408177, 205852688735274, 1852951469375105, 16677063111790072, 150094436937708753
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 19*a(n-1) - 135*a(n-2) + 525*a(n-3) - 1290*a(n-4) + 2142*a(n-5) - 2478*a(n-6) + 2010*a(n-7) - 1125*a(n-8) + 415*a(n-9) - 91*a(n-10) + 9*a(n-11) for n > 10.
G.f.: (-10*x^10 - 4507*x^9 - 131015*x^8 - 779378*x^7 - 1317686*x^6 - 637664*x^5 - 43448*x^4 + 10210*x^3 + 448*x^2 + 11*x - 1)/((x - 1)^10*(9*x - 1)). (End)

A024124 a(n) = 10^n - n^10.

Original entry on oeis.org

1, 9, -924, -58049, -1038576, -9665625, -59466176, -272475249, -973741824, -2486784401, 0, 74062575399, 938082635776, 9862141508151, 99710745345024, 999423349609375, 9998900488372224, 99997984006099551, 999996429532773376
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 21*a(n-1) - 165*a(n-2) + 715*a(n-3) - 1980*a(n-4) + 3762*a(n-5) - 5082*a(n-6) + 4950*a(n-7) - 3465*a(n-8) + 1705*a(n-9) - 561*a(n-10) + 111*a(n-11) - 10*a(n-12) for n > 11.
G.f.: (9*x^11 + 10140*x^10 + 477332*x^9 + 4504245*x^8 + 12648018*x^7 + 11793648*x^6 + 3241104*x^5 + 23538*x^4 - 37875*x^3 - 948*x^2 - 12*x + 1)/((x - 1)^11*(10*x - 1)). (End)

A024152 a(n) = 12^n - n^12.

Original entry on oeis.org

1, 11, -3952, -529713, -16756480, -243891793, -2173796352, -13805455393, -68289495040, -277269756129, -938082635776, -2395420006033, 0, 83695120256591, 1227224552173568, 15277275236695743, 184602783918325760
Offset: 0

Views

Author

Keywords

Comments

Conjecture: satisfies a linear recurrence having signature (25, -234, 1222, -4147, 9867, -17160, 22308, -21879, 16159, -8866, 3510, -949, 157, -12). - Harvey P. Dale, Jan 27 2019
The conjecture above is correct. From the general formula for {a(n)} we can see that the roots for the characteristic polynomial are one 12 and thirteen 1's, so the characteristic polynomial is (x - 12)*(x - 1)^13 = x^14 - 25*x^13 + 234*x^12 - ... + 12, with corresponding recurrence coefficients 25, -234, ..., -12. - Jianing Song, Jan 28 2019

Crossrefs

Programs

A024138 a(n) = 11^n - n^11.

Original entry on oeis.org

1, 10, -1927, -175816, -4179663, -48667074, -361025495, -1957839572, -8375575711, -29023111918, -74062575399, 0, 2395420006033, 32730551749894, 375700268413577, 4168598413556276, 45932137677527745, 505412756602986138
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

Formula

From Chai Wah Wu, Jan 26 2020: (Start)
a(n) = 23*a(n-1) - 198*a(n-2) + 946*a(n-3) - 2915*a(n-4) + 6237*a(n-5) - 9636*a(n-6) + 10956*a(n-7) - 9207*a(n-8) + 5665*a(n-9) - 2486*a(n-10) + 738*a(n-11) - 133*a(n-12) + 11*a(n-13) for n > 12.
G.f.: (-12*x^12 - 22383*x^11 - 1677037*x^10 - 24085511*x^9 - 104916261*x^8 - 163227822*x^7 - 91395930*x^6 - 14499462*x^5 + 523986*x^4 + 130461*x^3 + 1959*x^2 + 13*x - 1)/((x - 1)^12*(11*x - 1)). (End)

A024016 2^n-n^6.

Original entry on oeis.org

1, 1, -60, -721, -4080, -15593, -46592, -117521, -261888, -530929, -998976, -1769513, -2981888, -4818617, -7513152, -11357857, -16711680, -24006497, -33750080, -46521593, -62951424, -83668969, -109185600, -139647281, -174325760, -210586193, -241806912
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. sequences of the form k^n-n^6: this sequence (k=2), A024029 (k=3), A024042 (k=4), A024055 (k=5), A024068 (k=6), A024081 (k=7), A024094 (k=8), A024107 (k=9), A024120 (k=10), A024133 (k=11), A024146 (k=12).

Programs

  • Magma
    [2^n-n^6: n in [0..25]]; // Vincenzo Librandi, Apr 30 2011
    
  • Magma
    I:=[1,1,-60,-721,-4080,-15593,-46592,-117521]; [n le 8 select I[n] else 9*Self(n-1)-35*Self(n-2)+77*Self(n-3)-105*Self(n-4)+91*Self(n-5)-49*Self(n-6)+15*Self(n-7)-2*Self(n-8): n in [1..35]]; // Vincenzo Librandi, Oct 07 2014
  • Mathematica
    Table[2^n - n^6, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 8 x - 34 x^2 - 223 x^3 + 337 x^4 + 526 x^5 + 120 x^6 + x^7)/((1 - 2 x) (1 - x)^7), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 07 2014 *)
    LinearRecurrence[{9,-35,77,-105,91,-49,15,-2},{1,1,-60,-721,-4080,-15593,-46592,-117521},30] (* Harvey P. Dale, Oct 04 2019 *)

Formula

G.f.: (1-8*x-34*x^2-223*x^3+337*x^4+526*x^5+120*x^6+x^7) / ((1-2* x)*(1-x)^7). - Vincenzo Librandi, Oct 07 2014
a(n) = 9*a(n-1) -35*a(n-2) +77*a(n-3) -105*a(n-4) +91*a(n-5) -49*a(n-6) +15*a(n-7) -2*a(n-8) for n>7. - Vincenzo Librandi, Oct 07 2014

A243114 Primes of the form 6^x-x^6.

Original entry on oeis.org

5, 162287, 13055867207, 1719070799748422589190392551, 174588755932389037098918153698589675008087, 307180606913594390117978657628360735703373091543821695941623353827100004182413811352186951
Offset: 1

Views

Author

M. F. Hasler, Aug 20 2014

Keywords

Comments

The next term is too large to include.
See A117706 for the corresponding numbers x.
The next term has 113 digits. - Harvey P. Dale, Jan 17 2018

Crossrefs

Programs

  • Mathematica
    Select[Table[6^x-x^6,{x,200}],PrimeQ] (* Harvey P. Dale, Jan 17 2018 *)
  • PARI
    for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(p","))

A337670 Numbers that can be expressed as both Sum x^y and Sum y^x where the x^y are not equal to y^x for any (x,y) pair and all (x,y) pairs are distinct.

Original entry on oeis.org

432, 592, 1017, 1040, 1150, 1358, 1388, 1418, 1422, 1464, 1554, 1612, 1632, 1713, 1763, 1873, 1889, 1966, 1968, 1973, 1990, 2091, 2114, 2190, 2291, 2320, 2364, 2451, 2589, 2591, 2612, 2689, 2697, 2719, 2753, 2775, 2803, 2813, 2883, 3087, 3127, 3141, 3146
Offset: 1

Views

Author

Matej Veselovac, Sep 15 2020

Keywords

Comments

Numbers m of form m = Sum_{i=1...k} b_i^e_i = Sum_{i=1...k} e_i^b_i such that b_i^e_i != e_i^b_i, b_i > 1, e_i > 1, k = |{{b_i, e_i}, i = 1, 2, ...}|, k > 1.
Terms of the sequence relate to the Diophantine equation Sum_{i=1...k} x_i = 0, k > 1, x_i != 0, where x_i = (b_i^e_i - e_i^b_i) such that b_i > 1, e_i > 1 and (i != j) => ({b_i, e_i} != {b_j, e_j}). That is, we are observing linear combinations of elements from {(r^n - n^r) : n,r > 1} \ {0}, under given conditions.
For sums with k = 20 terms, one infinite family of examples is known: "2^(2t) + t^(4) + 2^(2t+8) + (t+4)^(4) + 2^(2t+16) + (t+8)^(4) + 2^(2t+32) + (t+16)^(4) + 2^(2t+34) + (t+17)^(4) + 4^(t+1) + (2t+2)^(2) + 4^(t+2) + (2t+4)^(2) + 4^(t+10) + (2t+20)^(2) + 4^(t+14) + (2t+28)^(2) + 4^(t+18) + (2t+36)^(2)" is a term of the sequence, for every t > 4.

Examples

			17 = 2^3 + 3^2 = 3^2 + 2^3 is not in the sequence because {2,3} = {3,2} are not distinct.
25 = 3^3 + 2^4 = 3^3 + 4^2 is not in the sequence because 3^3 = 3^3 and 2^4 = 4^2 are commutative.
The smallest term of the sequence is:
  a(1) = 432 = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7
             = 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2.
The smallest term that has more than one representation is:
  a(11) = 1554 = 3^2 + 7^2 + 6^3 + 2^8 + 4^5
               = 2^3 + 2^7 + 3^6 + 8^2 + 5^4,
  a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6
               = 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3.
Smallest terms with k = 5, 6, 7, 8, 9, 10 summands are:
  a(9)  = 1422 = 5^2 + 7^2 + 9^2 + 3^5 + 4^5
               = 2^5 + 2^7 + 2^9 + 5^3 + 5^4,
  a(1)  = 432  = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7
               = 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2,
  a(2)  = 592  = 3^2 + 5^2 + 7^2 + 4^3 + 2^6 + 5^3 + 2^8
               = 2^3 + 2^5 + 2^7 + 3^4 + 6^2 + 3^5 + 8^2,
  a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6
               = 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3,
  a(14) = 1713 = 3^2 + 2^5 + 6^2 + 8^2 + 4^3 + 2^7 + 3^5 + 2^9 + 5^4
               = 2^3 + 5^2 + 2^6 + 2^8 + 3^4 + 7^2 + 5^3 + 9^2 + 4^5,
  a(28) = 2451 = 3^2 + 5^2 + 6^2 + 8^2 + 3^4 + 2^7 + 6^3 + 3^5 + 5^4 + 2^10
               = 2^3 + 2^5 + 2^6 + 2^8 + 4^3 + 7^2 + 3^6 + 5^3 + 4^5 + 10^2.
		

Crossrefs

Cf. A337671 (subsequence for k <= 5).
Cf. A005188 (perfect digital invariants).
Cf. Perfect powers: A001597, A072103.
Cf. Commutative powers: A271936.
Cf. Nonnegative numbers of the form (r^n - n^r), for n,r > 1: A045575.
Cf. Numbers of the form (r^n - n^r): A024012 (r = 2), A024026 (r = 3), A024040 (r = 4), A024054 (r = 5), A024068 (r = 6), A024082 (r = 7), A024096 (r = 8), A024110 (r = 9), A024124 (r = 10), A024138 (r = 11), A024152 (r = 12).
Showing 1-9 of 9 results.