A024096
a(n) = 8^n - n^8.
Original entry on oeis.org
1, 7, -192, -6049, -61440, -357857, -1417472, -3667649, 0, 91171007, 973741824, 8375575711, 68289495040, 548940083167, 4396570722048, 35181809198207, 281470681743360, 2251792837927807, 18014387489521408, 144115171092292831
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (17, -108, 372, -798, 1134, -1092, 708, -297, 73, -8).
-
[8^n-n^8: n in [0..25]]; // Vincenzo Librandi, May 16 2011
-
Table[8^n - n^8, {n, 0, 20}] (* or *) LinearRecurrence[ {17, -108, 372, -798, 1134, -1092, 708, -297, 73, -8}, {1, 7, -192, -6049, -61440, -357857, -1417472, -3667649, 0, 91171007}, 20] (* Harvey P. Dale, Oct 10 2013 *)
-
a(n)=8^n-n^8 \\ Charles R Greathouse IV, Oct 07 2015
A024110
a(n) = 9^n - n^9.
Original entry on oeis.org
1, 8, -431, -18954, -255583, -1894076, -9546255, -35570638, -91171007, 0, 2486784401, 29023111918, 277269756129, 2531261328956, 22856131408177, 205852688735274, 1852951469375105, 16677063111790072, 150094436937708753
Offset: 0
-
[9^n-n^9: n in [0..20]]; // Vincenzo Librandi, Jun 30 2011
-
lst={}; Do[AppendTo[lst,9^n-n^9],{n,0,5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
Table[9^n-n^9,{n,0,20}] (* Harvey P. Dale, Jul 27 2022 *)
A024124
a(n) = 10^n - n^10.
Original entry on oeis.org
1, 9, -924, -58049, -1038576, -9665625, -59466176, -272475249, -973741824, -2486784401, 0, 74062575399, 938082635776, 9862141508151, 99710745345024, 999423349609375, 9998900488372224, 99997984006099551, 999996429532773376
Offset: 0
-
[10^n-n^10: n in [0..20]]; // Vincenzo Librandi, Jun 30 2011
-
lst={}; Do[AppendTo[lst,10^n-n^10],{n,0,5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 15 2009 *)
Table[10^n-n^10,{n,0,20}] (* Harvey P. Dale, Apr 22 2018 *)
A024152
a(n) = 12^n - n^12.
Original entry on oeis.org
1, 11, -3952, -529713, -16756480, -243891793, -2173796352, -13805455393, -68289495040, -277269756129, -938082635776, -2395420006033, 0, 83695120256591, 1227224552173568, 15277275236695743, 184602783918325760
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..300
- Index entries for linear recurrences with constant coefficients, signature (25,-234,1222,-4147,9867,-17160,22308,-21879,16159,-8866,3510,-949,157,-12).
Cf.
A024012,
A024026,
A058794,
A024040,
A024054,
A024068,
A024082,
A024096,
A024110,
A024124,
A024138. -
Vladimir Joseph Stephan Orlovsky, Jan 15 2009
A024138
a(n) = 11^n - n^11.
Original entry on oeis.org
1, 10, -1927, -175816, -4179663, -48667074, -361025495, -1957839572, -8375575711, -29023111918, -74062575399, 0, 2395420006033, 32730551749894, 375700268413577, 4168598413556276, 45932137677527745, 505412756602986138
Offset: 0
Cf.
A024012,
A024026,
A058794,
A024040,
A024054,
A024068,
A024082,
A024096,
A024110,
A024124. -
Vladimir Joseph Stephan Orlovsky, Jan 15 2009
A024017
a(n) = 2^n - n^7.
Original entry on oeis.org
1, 1, -124, -2179, -16368, -78093, -279872, -823415, -2096896, -4782457, -9998976, -19485123, -35827712, -62740325, -105397120, -170826607, -268369920, -410207601, -611957888, -893347451, -1278951424, -1798991389, -2490163584, -3396436839
Offset: 0
- Vincenzo Librandi, Table of n, a(n) for n = 0..239
- Index entries for linear recurrences with constant coefficients, signature (10,-44,112,-182,196,-140,64,-17,2).
Cf. sequences of the form k^n-n^7: this sequence (k=2),
A024030 (k=3),
A024043 (k=4),
A024056 (k=5),
A024069 (k=6),
A024082 (k=7),
A024095 (k=8),
A024108 (k=9),
A024121 (k=10),
A024134 (k=11),
A024147 (k=12).
-
[2^n-n^7: n in [0..25]]; // Vincenzo Librandi, Apr 30 2011
-
I:=[1,1,-124,-2179,-16368,-78093,-279872,-823415,-2096896]; [n le 9 select I[n] else 10*Self(n-1)-44*Self(n-2)+112*Self(n-3)-182*Self(n-4)+196*Self(n-5)-140*Self(n-6)+64*Self(n-7)-17*Self(n-8)+2*Self(n-9): n in [1..35]]; // Vincenzo Librandi, Oct 07 2014
-
Table[2^n - n^7, {n, 0, 30}] (* or *) CoefficientList[Series[(1 - 9 x - 90 x^2 - 1007 x^3 + 36 x^4 + 3585 x^5 + 2290 x^6 + 231 x^7 + 3 x^8)/((1 - 2 x) (1 - x)^8), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 07 2014 *)
LinearRecurrence[{10,-44,112,-182,196,-140,64,-17,2},{1,1,-124,-2179,-16368,-78093,-279872,-823415,-2096896},30] (* Harvey P. Dale, Feb 28 2023 *)
A337670
Numbers that can be expressed as both Sum x^y and Sum y^x where the x^y are not equal to y^x for any (x,y) pair and all (x,y) pairs are distinct.
Original entry on oeis.org
432, 592, 1017, 1040, 1150, 1358, 1388, 1418, 1422, 1464, 1554, 1612, 1632, 1713, 1763, 1873, 1889, 1966, 1968, 1973, 1990, 2091, 2114, 2190, 2291, 2320, 2364, 2451, 2589, 2591, 2612, 2689, 2697, 2719, 2753, 2775, 2803, 2813, 2883, 3087, 3127, 3141, 3146
Offset: 1
17 = 2^3 + 3^2 = 3^2 + 2^3 is not in the sequence because {2,3} = {3,2} are not distinct.
25 = 3^3 + 2^4 = 3^3 + 4^2 is not in the sequence because 3^3 = 3^3 and 2^4 = 4^2 are commutative.
The smallest term of the sequence is:
a(1) = 432 = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7
= 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2.
The smallest term that has more than one representation is:
a(11) = 1554 = 3^2 + 7^2 + 6^3 + 2^8 + 4^5
= 2^3 + 2^7 + 3^6 + 8^2 + 5^4,
a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6
= 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3.
Smallest terms with k = 5, 6, 7, 8, 9, 10 summands are:
a(9) = 1422 = 5^2 + 7^2 + 9^2 + 3^5 + 4^5
= 2^5 + 2^7 + 2^9 + 5^3 + 5^4,
a(1) = 432 = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7
= 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2,
a(2) = 592 = 3^2 + 5^2 + 7^2 + 4^3 + 2^6 + 5^3 + 2^8
= 2^3 + 2^5 + 2^7 + 3^4 + 6^2 + 3^5 + 8^2,
a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6
= 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3,
a(14) = 1713 = 3^2 + 2^5 + 6^2 + 8^2 + 4^3 + 2^7 + 3^5 + 2^9 + 5^4
= 2^3 + 5^2 + 2^6 + 2^8 + 3^4 + 7^2 + 5^3 + 9^2 + 4^5,
a(28) = 2451 = 3^2 + 5^2 + 6^2 + 8^2 + 3^4 + 2^7 + 6^3 + 3^5 + 5^4 + 2^10
= 2^3 + 2^5 + 2^6 + 2^8 + 4^3 + 7^2 + 3^6 + 5^3 + 4^5 + 10^2.
Cf.
A337671 (subsequence for k <= 5).
Cf.
A005188 (perfect digital invariants).
Cf. Nonnegative numbers of the form (r^n - n^r), for n,r > 1:
A045575.
Cf. Numbers of the form (r^n - n^r):
A024012 (r = 2),
A024026 (r = 3),
A024040 (r = 4),
A024054 (r = 5),
A024068 (r = 6),
A024082 (r = 7),
A024096 (r = 8),
A024110 (r = 9),
A024124 (r = 10),
A024138 (r = 11),
A024152 (r = 12).
Showing 1-7 of 7 results.
Comments