A337671 Subsequence of A337670 in which there are at most five terms in the sum.
1422, 1464, 1554, 2612, 3127, 4481, 5644, 16122, 68521, 77129, 82583, 1065585, 4227140, 6164560
Offset: 1
Examples
a(1) = 1422 = 2^5 + 2^7 + 5^3 + 5^4 + 2^9 = 5^2 + 7^2 + 3^5 + 4^5 + 9^2 a(2) = 1464 = 2^5 + 2^6 + 2^7 + 4^5 + 6^3 = 5^2 + 6^2 + 7^2 + 5^4 + 3^6 a(3) = 1554 = 2^3 + 2^7 + 8^2 + 5^4 + 3^6 = 3^2 + 7^2 + 2^8 + 4^5 + 6^3 a(4) = 2612 = 2^5 + 2^6 + 5^3 + 7^3 + 2^11 = 5^2 + 6^2 + 3^5 + 3^7 + 11^2 a(5) = 3127 = 2^3 + 2^9 + 6^3 + 7^3 + 2^11 = 3^2 + 9^2 + 3^6 + 3^7 + 11^2 a(6) = 4481 = 2^6 + 7^2 + 2^10 + 2^11 + 6^4 = 6^2 + 2^7 + 10^2 + 11^2 + 4^6 a(7) = 5644 = 4^5 + 9^2 + 10^2 + 7^3 + 4^6 = 5^4 + 2^9 + 2^10 + 3^7 + 6^4 a(8) = 16122 = 2^3 + 4^3 + 2^8 + 5^6 + 13^2 = 3^2 + 3^4 + 8^2 + 6^5 + 2^13 a(9) = 68521 = 2^8 + 4^5 + 4^6 + 3^10 + 8^4 = 8^2 + 5^4 + 6^4 + 10^3 + 4^8 a(10) = 77129 = 4^6 + 2^12 + 7^4 + 10^3 + 2^16 = 6^4 + 12^2 + 4^7 + 3^10 + 16^2 a(11) = 82583 = 2^5 + 4^3 + 12^2 + 7^5 + 2^16 = 5^2 + 3^4 + 2^12 + 5^7 + 16^2 a(12) = 1065585 = 2^9 + 2^12 + 7^4 + 10^4 + 2^20 = 9^2 + 12^2 + 4^7 + 4^10 + 20^2 a(13) = 4227140 = 5^6 + 13^2 + 7^4 + 11^4 + 2^22 = 6^5 + 2^13 + 4^7 + 4^11 + 22^2 a(14) = 6164560 = 5^7 + 2^18 + 9^5 + 21^2 + 7^8 = 7^5 + 18^2 + 5^9 + 2^21 + 8^7
Links
- Math StackExchange, Base-Exponent Invariants, 2020.
- Matej Veselovac, PYTHON program for A337671
- Eric Weisstein's World of Mathematics, Perfect Power.
Comments