A337670 Numbers that can be expressed as both Sum x^y and Sum y^x where the x^y are not equal to y^x for any (x,y) pair and all (x,y) pairs are distinct.
432, 592, 1017, 1040, 1150, 1358, 1388, 1418, 1422, 1464, 1554, 1612, 1632, 1713, 1763, 1873, 1889, 1966, 1968, 1973, 1990, 2091, 2114, 2190, 2291, 2320, 2364, 2451, 2589, 2591, 2612, 2689, 2697, 2719, 2753, 2775, 2803, 2813, 2883, 3087, 3127, 3141, 3146
Offset: 1
Keywords
Examples
17 = 2^3 + 3^2 = 3^2 + 2^3 is not in the sequence because {2,3} = {3,2} are not distinct. 25 = 3^3 + 2^4 = 3^3 + 4^2 is not in the sequence because 3^3 = 3^3 and 2^4 = 4^2 are commutative. The smallest term of the sequence is: a(1) = 432 = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7 = 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2. The smallest term that has more than one representation is: a(11) = 1554 = 3^2 + 7^2 + 6^3 + 2^8 + 4^5 = 2^3 + 2^7 + 3^6 + 8^2 + 5^4, a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6 = 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3. Smallest terms with k = 5, 6, 7, 8, 9, 10 summands are: a(9) = 1422 = 5^2 + 7^2 + 9^2 + 3^5 + 4^5 = 2^5 + 2^7 + 2^9 + 5^3 + 5^4, a(1) = 432 = 3^2 + 5^2 + 2^6 + 3^4 + 5^3 + 2^7 = 2^3 + 2^5 + 6^2 + 4^3 + 3^5 + 7^2, a(2) = 592 = 3^2 + 5^2 + 7^2 + 4^3 + 2^6 + 5^3 + 2^8 = 2^3 + 2^5 + 2^7 + 3^4 + 6^2 + 3^5 + 8^2, a(11) = 1554 = 3^2 + 5^2 + 2^6 + 10^2 + 2^7 + 3^5 + 2^8 + 3^6 = 2^3 + 2^5 + 6^2 + 2^10 + 7^2 + 5^3 + 8^2 + 6^3, a(14) = 1713 = 3^2 + 2^5 + 6^2 + 8^2 + 4^3 + 2^7 + 3^5 + 2^9 + 5^4 = 2^3 + 5^2 + 2^6 + 2^8 + 3^4 + 7^2 + 5^3 + 9^2 + 4^5, a(28) = 2451 = 3^2 + 5^2 + 6^2 + 8^2 + 3^4 + 2^7 + 6^3 + 3^5 + 5^4 + 2^10 = 2^3 + 2^5 + 2^6 + 2^8 + 4^3 + 7^2 + 3^6 + 5^3 + 4^5 + 10^2.
Links
- Math StackExchange, Base-Exponent Invariants, 2020.
- Matej Veselovac, PYTHON program for A337670
- Eric Weisstein's World of Mathematics, Perfect Power.
Comments