A117706
Numbers k such that 6^k - k^6 is prime.
Original entry on oeis.org
1, 7, 13, 35, 53, 115, 145, 307, 10163
Offset: 1
Mohammed Bouayoun (Mohammed.Bouayoun(AT)sanef.com), Apr 13 2006, Jan 08 2008
a(2)=7 because 6^7 - 7^6 = 162287 is prime.
-
Do[If[PrimeQ[(6^n-n^6)],Print[n]],{n,1,3000}]
-
for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(x", ")) \\ M. F. Hasler, Aug 20 2014
A123206
Primes of the form x^y - y^x, for x,y > 1.
Original entry on oeis.org
7, 17, 79, 431, 58049, 130783, 162287, 523927, 2486784401, 6102977801, 8375575711, 13055867207, 83695120256591, 375700268413577, 2251799813682647, 9007199254738183, 79792265017612001, 1490116119372884249
Offset: 1
The primes 6102977801 and 1490116119372884249 are of the form 5^y-y^5 (for y=14 and y=26) and therefore members of this sequence. The next larger primes of this form would have y > 4500 and would be much too large to be included. - _M. F. Hasler_, Aug 19 2014
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
-
N:= 10^100: # to get all terms <= N
A:= NULL:
for x from 2 while x^(x+1) - (x+1)^x <= N do
for y from x+1 do
z:= x^y - y^x;
if z > N then break
elif z > 0 and isprime(z) then A:=A, z;
fi
od od:
{A}; # Robert Israel, Aug 29 2014
-
Take[Select[Intersection[Flatten[Table[Abs[x^y-y^x],{x,2,120},{y,2,120}]]],PrimeQ[ # ]&],25]
nn=10^50; n=1; t=Union[Reap[While[n++; k=n+1; num=Abs[n^k-k^n]; num0&&PrimeQ[#]&]],nn]] (* Harvey P. Dale, Nov 23 2013 *)
-
a=[];for(S=1,199,for(x=2,S-2,ispseudoprime(p=x^(y=S-x)-y^x)&&a=concat(a,p)));Set(a) \\ May be incomplete in the upper range of values, i.e., beyond a given S=x+y, a larger S may yield a smaller prime (for small x). - M. F. Hasler, Aug 19 2014
Showing 1-2 of 2 results.
Comments