A126094
Numbers k such that prime(k) = A123206(n).
Original entry on oeis.org
4, 7, 22, 83, 5878, 12229, 14871, 43360, 120833116, 284116756, 384239518, 586968768, 2697787565123, 11550434172799, 65612899915231, 252252704148332, 2105877470620834, 36504944044141057, 4194084944223361535
Offset: 1
a(15)-a(19) using Kim Walisch's primecount, from
Amiram Eldar, Mar 24 2019
A007925
a(n) = n^(n+1) - (n+1)^n.
Original entry on oeis.org
-1, -1, -1, 17, 399, 7849, 162287, 3667649, 91171007, 2486784401, 74062575399, 2395420006033, 83695120256591, 3143661612445145, 126375169532421599, 5415486851106043649, 246486713303685957375, 11877172892329028459041, 604107995057426434824791
Offset: 0
Dennis S. Kluk (mathemagician(AT)ameritech.net)
a(2) = 1^2 - 2^1 = -1,
a(4) = 3^4 - 4^3 = 17.
- G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
-
A007925:=n->n^(n+1)-(n+1)^n: seq(A007925(n), n=0..25); # Wesley Ivan Hurt, Jan 10 2017
-
lst={};Do[AppendTo[lst, (n^(n+1)-((n+1)^n))], {n, 0, 4!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 19 2008 *)
#^(#+1)-(#+1)^#&/@Range[0,20] (* Harvey P. Dale, Oct 22 2011 *)
-
A007925[n]:=n^(n+1)-(n+1)^n$ makelist(A007925[n],n,0,30); /* Martin Ettl, Oct 29 2012 */
-
a(n)=n^(n+1)-(n+1)^n \\ Charles R Greathouse IV, Feb 06 2017
Original entry on oeis.org
1, 6, -79, -1844, -13983, -61318, -162287, 0, 3667649, 35570638, 272475249, 1957839572, 13805455393, 96826261890, 678117659345, 4747390650568, 33232662134145, 232630103648534, 1628412985690417, 11398894291501404, 79792265017612001, 558545862282195466
Offset: 0
A243100
Primes of the form x^(y+1)-y^x, for x,y > 0.
Original entry on oeis.org
3, 7, 19, 179, 543607, 129136067, 94143168179, 11920928949924493, 36472996377170722403, 61159026180004467059, 1341068619659378429383, 10301051460877537453973547005699, 710542735760100185871124061615149, 17763568394002504646778106434649157
Offset: 1
-
a=[];for(S=1,199,for(x=1,S-1,ispseudoprime(p=x^(1+y=S-x)-y^x)&&a=concat(a,p)));vecsort(a) \\ The list calculated this way is probably not complete up to the last terms. E.g., a 46 digit prime is found for x=3, y=97 after three larger terms for smaller S=x+y.
-
m=300; a=[]; for(x=1, m+5, for(y=1, m+5, p=x^(y+1)-y^x; if(p<2^m && ispseudoprime(p), a=concat(a, p)))); a=vecsort(a) \\ Compute all terms below 2^m. Jens Kruse Andersen, Aug 23 2014
A243114
Primes of the form 6^x-x^6.
Original entry on oeis.org
5, 162287, 13055867207, 1719070799748422589190392551, 174588755932389037098918153698589675008087, 307180606913594390117978657628360735703373091543821695941623353827100004182413811352186951
Offset: 1
Cf.
A072180,
A109387,
A117705,
A117706,
A128447,
A128448,
A128449,
A128450,
A128451,
A122003,
A128453,
A128454.
-
Select[Table[6^x-x^6,{x,200}],PrimeQ] (* Harvey P. Dale, Jan 17 2018 *)
-
for(x=1,1e5,ispseudoprime(p=6^x-x^6)&&print1(p","))
A242113
a(n) = number of primes of the form k^n - m^k where k > m > 0.
Original entry on oeis.org
0, 1, 2, 6, 7, 2, 14, 7, 11, 10, 33, 10, 42, 35, 47, 39, 122, 22, 248, 113, 247, 236, 751, 75, 1268, 812, 1422, 1531, 4543, 87, 8669, 5750, 8884, 10983, 29084, 2274, 58841, 41242, 58030, 74646, 216647, 11656, 419147, 313237, 364925, 617742, 1576642, 75542, 3071839, 2299620
Offset: 1
a(2) = 1 because 2^2 - 1^2 = 3 is prime;
a(3) = 2 because 2^3 - 1^2 = 7 is prime and 3^3 - 2^3 = 19 is prime, but 2^3 - 2^3 < 0, 5^3 - 2^5 = 93 is not prime, 5^3 - 2^7 = 215 is not prime, 9^3 - 2^9 = 217 is not prime, 11^3 - 2^11 < 0.
More generally, primes of the form k^r - m^k where k > m > 0:
r = 2: 3;
r = 3: 7, 19;
r = 4: 7, 17, 73, 593, 2273, 20369;
r = 5: 7, 23, 31, 179, 58537, 1951811, 1986949;
r = 6: 4818617, 24006497;
r = 7: 7, 47, 79, 103, 127, 1137, 2179, 77101, 162287, 543607, 1706527, 9940951, 6069961193, 25365130463;
r = 8: 31, 6553, 141793, 49046209, 815722529, 16983038753, 499709542049;
r = 9: 71, 151, 223, 431, 463, 487, 503, 4521799, 133227103, 10604491181, 1175888158183;
r = 10: 4177, 37097, 58049, 58537, 1803001, 2486784401, 3486783889, 41426502825041, 819626139497153, 52458394747474721.
-
f[r_] := Length@ Rest@ Union@ Flatten@ Table[ If[ PrimeQ[k^r - m^k], k^r - m^k, 0], {k, 2, 10000000}, {m, Floor[k^(r/k)]}]; Do[ Print[ f[r]], {r, 2, 50}] (* Robert G. Wilson v, Aug 25 2014 *)
Showing 1-6 of 6 results.
Comments