cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A099498 Semiprimes of the form A007925(n) = n^(n+1)-(n+1)^n.

Original entry on oeis.org

7849, 3667649, 91171007, 2395420006033, 11877172892329028459041, 604107995057426434824791, 107174878415004743976428761769, 424678439961073471604787362241217, 1983672219242345491970468171243171249, 10788746499945827829225142589096882612369, 42855626937384013751014398588294858582343260060671
Offset: 1

Views

Author

Hugo Pfoertner, Oct 19 2004

Keywords

Examples

			a(1)=7849 because 5^6-6^5=7849=47*167 is a semiprime.
		

Crossrefs

Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099499 primes of the form n^(n+1)-(n+1)^n, A099497 n^(n+1)-(n+1)^n is a semiprime.

Programs

  • Magma
    IsSemiprime:=func; [s: n in [3..30] | IsSemiprime(s) where s is n^(n+1)-(n+1)^n]; // Vincenzo Librandi, Sep 21 2012
  • Mathematica
    Select[Table[n^(n + 1) - (n + 1)^n, {n, 30}], PrimeOmega[#] == 2&] (* Vincenzo Librandi, Sep 21 2012 *)

Extensions

a(9)-a(11) from Vincenzo Librandi, Sep 21 2012

A099497 Numbers k such that A007925(k) = k^(k+1) - (k+1)^k is a semiprime.

Original entry on oeis.org

5, 7, 8, 11, 17, 18, 21, 23, 25, 27, 32, 47, 51, 56, 59, 165
Offset: 1

Views

Author

Hugo Pfoertner, Oct 19 2004, Aug 13 2007

Keywords

Comments

a(15)=59 confirmed by the factorization of 59^60 - 60^59, which is the product of the 52-digit prime 1994803969065168661575061125592557043358338451845483 and the 55-digit prime 8529249434913526091880095870250840825853220069057672947.
The next term is >= 182. - Hugo Pfoertner, Jul 18 2019

Examples

			a(1) = 5 because 5^6 - 6^5 = 7849 = 47*167 is a semiprime.
a(1) = 5 because 5^6 - 6^5 = 47*167
a(2) = 7 because 7^8 - 8^7 = 23*159463
a(3) = 8 because 8^9 - 9^8 = 257*354751
a(4) = 11 because 11^12 - 12^11 = 33479*71549927
a(5) = 17 because 17^18 - 18^17 = 443881*26757560905578361
a(6) = 18 because 18^19 - 19^18 = 100417*6015993258685545623
a(7) = 21 because 21^22 - 22^21 = 10745792197529*9973660056412561
a(8) = 23 because 23^24 - 24^23 = 92798617729*4576344458074395243073
a(9) = 25 because 25^26 - 26^25 = 1627*1219220786258356172077730898121187
a(10) = 27 because 27^28 - 28^27 = 12298336501553*877252504725615101634783073
a(11) = 32 because 32^33 - 33^32 = 3506869732968391733353*12220478717670771804763962407
a(12) = 47 because 47^48 - 48^47 = 11*15621013371424880252957237277868559270462038147831682437840584991339231377934499
a(13) = 51 because 51^52 - 52^51 = 10562756058978342869988055703171*5575962824795589360993690554534422732411612977322491058843
a(14) = 56 because 56^57 - 57^56 = 5*843980334169667457302970806376511482920948635540290643213973523914715036518308339240201775858865907
a(15) = 59 because 59^60 - 60^59 = 1994803969065168661575061125592557043358338451845483*8529249434913526091880095870250840825853220069057672947
a(16) = 165 because 165^166 - 166^165 = 7633959407*16307690786821361595026621717879347561301150483781862339651556401266189322630373265190696672506475741217560239791446654891805648807872536646884416611251422684856600732984767987061831649144878649678190762809385448362714901584206533854093359279076584767352259587745683931159999248465944943129517543272252180930134912057221968601458271001580745436226192252814407
		

Crossrefs

Cf. A007925 (n^(n+1)-(n+1)^n), A072179 (k^(k+1)-(k+1)^k is prime), A099498 (semiprimes of the form k^(k+1)-(k+1)^k).

Extensions

165 from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 12 2008

A099499 Primes of the form A007925(n)=n^(n+1)-(n+1)^n.

Original entry on oeis.org

17, 162287, 2486784401, 83695120256591, 84721522804414816904952398305908708011513455440403306207160333176150520399
Offset: 1

Views

Author

Hugo Pfoertner, Oct 19 2004

Keywords

Comments

The next term a(6)=883^884-884^883 has 2605 decimal digits and is too large to display.

Examples

			a(2)=162287 because A007925(A072179(2))=6^7-7^6=162287 is prime.
		

Crossrefs

Cf. A007925 n^(n+1)-(n+1)^n, A072179 n^(n+1)-(n+1)^n is prime, A099497 n^(n+1)-(n+1)^n is a semiprime, A099498 semiprimes of the form n^(n+1)-(n+1)^n.

Programs

  • Magma
    [a: n in [0..50] | IsPrime(a) where a is n^(n+1)-(n+1)^n ]; // Vincenzo Librandi, Jul 18 2012
  • Mathematica
    Select[Table[n^(n+1)-(n+1)^n,{n,0,1000}],PrimeQ] (* Vincenzo Librandi, Jul 18 2012 *)

A145328 Partial sums of A007925, starting at n=1.

Original entry on oeis.org

-1, -2, 15, 414, 8263, 170550, 3838199, 95009206, 2581793607, 76644369006, 2472064375039, 86167184631630, 3229828797076775, 129604998329498374, 5545091849435542023, 252031805153121499398, 12129204697482149958439
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    lst={};s=0;Do[s+=n^(n+1)-(n+1)^n;AppendTo[lst,s],{n,5!}];lst
    Accumulate[Table[n^(n+1)-(n+1)^n,{n,20}]] (* Harvey P. Dale, Aug 26 2012 *)

Extensions

Edited by N. J. A. Sloane, Oct 09 2008

A174380 Smallest prime factors of numbers of the form (n-1)^n - n^(n-1) A007925.

Original entry on oeis.org

17, 3, 47, 162287, 23, 257, 2486784401, 3, 33479, 83695120256591, 5, 67, 7, 3, 443881, 100417, 859, 79, 10745792197529, 3, 92798617729, 67, 1627, 11, 12298336501553, 3, 19, 241, 167, 3506869732968391733353, 5, 3, 47, 5, 317
Offset: 4

Views

Author

Torbjorn Alm (talm(AT)tele2.se), Mar 17 2010

Keywords

Comments

For n = 1 to 3 no prime factors in A007925(n).

Crossrefs

Programs

  • Mathematica
    Table[FactorInteger[(n-1)^n-n^(n-1)][[1,1]],{n,4,40}] (* Harvey P. Dale, May 25 2011 *)

A051442 a(n) = n^(n+1)+(n+1)^n.

Original entry on oeis.org

1, 3, 17, 145, 1649, 23401, 397585, 7861953, 177264449, 4486784401, 125937424601, 3881436747409, 130291290501553, 4731091158953433, 184761021583202849, 7721329860319737601, 343809097055019694337, 16248996011806421522977
Offset: 0

Views

Author

Keywords

Comments

Odd prime p divides a(p-2). For n>1, a(prime(n)-2)/prime(n) = A125074(n) = {1, 29, 3343, 407889491, 298572057493, 454195874136455153, ...}. Prime p divides a((p+5)/2) for p = {19, 23, 61}. - Alexander Adamchuk, Nov 18 2006
From Mathew Englander, Jul 08 2020: (Start)
For all n != 1, a(n) mod 8 = 1.
If n mod 6 = 0, 3, or 5, then a(n) mod 6 = 1. If n mod 6 = 1, then a(n) mod 6 = 3. If n mod 6 = 2 or 4, then a(n) mod 6 = 5.
For all n, a(n)-1 is a multiple of n^2.
For n odd and n >= 3, a(n)-1 is a multiple of (n+1)^2.
For n even and n >= 0, a(n)+1 is a multiple of (n+1)^2.
For proofs, see the Englander link. (End)

Crossrefs

Programs

Formula

a(n) = (n + e + o(1)) * n^n. - Charles R Greathouse IV, Jan 12 2012
From Mathew Englander, Jul 08 2020: (Start)
a(n) = A093898(n+1, n) for n >= 1.
a(n) = a(n-1) + A258389(n) for n >= 1.
a(n) = A007778(n) + A000169(n+1).
(End)

A046065 a(n) = n^(n+2) - (n+2)^n.

Original entry on oeis.org

-1, -2, 0, 118, 2800, 61318, 1417472, 35570638, 973741824, 29023111918, 938082635776, 32730551749894, 1227224552173568, 49239697945731382, 2105895743771443200, 95663702284183543582, 4600926951773050961920, 233592048827366522661214
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A007925 (n^(n+1) - (n+1)^n).

Programs

Formula

a(n) = n^(n+2) - (n+2)^n.

A055651 Table T(m,k)=m^k-k^m (with 0^0 taken to be 1) as square array read by antidiagonals.

Original entry on oeis.org

0, 1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 2, 0, -2, -1, 1, 3, 1, -1, -3, -1, 1, 4, 0, 0, 0, -4, -1, 1, 5, -7, -17, 17, 7, -5, -1, 1, 6, -28, -118, 0, 118, 28, -6, -1, 1, 7, -79, -513, -399, 399, 513, 79, -7, -1, 1, 8, -192, -1844, -2800, 0, 2800, 1844, 192, -8, -1, 1, 9, -431
Offset: 0

Views

Author

Henry Bottomley, Jun 07 2000

Keywords

Crossrefs

Rows A000012 (offset), A023443, A024012, A024026, A024040 and diagonals A000004, A007925, A046065, A055652.

Extensions

Title corrected by Sean A. Irvine, Mar 30 2022

A178922 a(n) = (n+1)^n - n^(n-1) for n > 0, a(0) = 1.

Original entry on oeis.org

1, 1, 7, 55, 561, 7151, 109873, 1979503, 40949569, 956953279, 24937424601, 717070946087, 22555076751793, 770416688131663, 28399211252136481, 1123728578581456351, 47508270371060021505, 2137250367863029663487, 101941438738172545000873, 5138752649702088758467159
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (f-> f(n+1)-f(n))(n-> `if`(n=0, 0, n^(n-1))):
    seq(a(n), n=0..20);  # Alois P. Heinz, Feb 26 2020
  • Mathematica
    Table[(n+1)^n-n^(n-1),{n,25}]
  • Maxima
    A178922[n]:=(n+1)^n-n^(n-1)$ makelist(A178922[n],n,1,30); /* Martin Ettl, Oct 29 2012 */
    
  • PARI
    vector(100, n, (n+1)^n - n^(n-1)) \\ Altug Alkan, Oct 19 2015

Formula

a(n) = A152917(n+1) - A152917(n). - Alexei Kourbatov, Oct 19 2015
E.g.f.: W(-x) - W(-x)/(x*(1+W(-x))) where W is the Lambert W function. - Robert Israel, Oct 19 2015

Extensions

a(0)=1 prepended and definition adapted by Alois P. Heinz, Feb 26 2020

A051489 a(n) = n^(n+2) + (n+2)^n.

Original entry on oeis.org

1, 4, 32, 368, 5392, 94932, 1941760, 45136576, 1173741824, 33739007300, 1061917364224, 36314872537968, 1340612376924160, 53132088082450132, 2250010931847299072, 101388548387203175168, 4843806013966239465472
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n^(n+2) + (n+2)^n: n in [0..30]]; // G. C. Greubel, Jul 14 2021
    
  • Mathematica
    Table[n^(n+2)+(n+2)^n,{n,0,20}] (* Harvey P. Dale, Jul 28 2025 *)
  • Sage
    [n^(n+2) + (n+2)^n for n in (0..30)] # G. C. Greubel, Jul 14 2021
Showing 1-10 of 18 results. Next