A335367 Primes at the end of the first-occurrence gaps in A014320.
3, 5, 11, 29, 97, 127, 149, 211, 541, 907, 1151, 1361, 1693, 1847, 2503, 2999, 4327, 5623, 9587, 15727, 16183, 19373, 19661, 28277, 30631, 31469, 31957, 34123, 35671, 43391, 44351, 81509, 82129, 89753, 134581, 156007, 162209, 173429, 188107, 212777, 265703
Offset: 1
Keywords
Examples
The first two primes are 2 and 3, and the first prime gap is 3 - 2 = 1; so a(1)=3. The next prime is 5, and the next gap is 5 - 3 = 2; this gap size has not occurred before, so a(2)=5. The next prime is 7, and the next gap is 7 - 5 = 2; the gap size 2 has already occurred before, so nothing is added to the sequence.
Links
- Brian Kehrig, Table of n, a(n) for n = 1..777 (Terms 1..745 from Alexei Kourbatov).
- Alexei Kourbatov and Marek Wolf, On the first occurrences of gaps between primes in a residue class, arXiv preprint arXiv:2002.02115 [math.NT], 2020.
- The Prime Gap List, First Occurrence Prime Gaps
Programs
-
PARI
my(isFirstOcc=vector(9999, j, 1), s=2); forprime(p=3, 1e8, my(g=p-s); if(isFirstOcc[g], print1(p, ", "); isFirstOcc[g]=0); s=p)
Comments