cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A125074 A051442[p-2]/p for p = Prime[n]>2.

Original entry on oeis.org

1, 29, 3343, 407889491, 298572057493, 454195874136455153, 855210316410864290683, 6009294624226370518329498431, 453664960868214198206218533253007296517
Offset: 2

Views

Author

Alexander Adamchuk, Nov 18 2006

Keywords

Comments

A051442(n) = n^(n+1)+(n+1)^n. Odd prime p divides A051442(p-2).

Crossrefs

Cf. A051442.

Programs

  • Mathematica
    Table[((Prime[n]-2)^(Prime[n]-1)+(Prime[n]-1)^(Prime[n]-2))/Prime[n],{n,2,15}]

Formula

a(n) = A051442[ Prime[n] - 2 ]/Prime[n] for n>1.

A145329 Partial sums of A051442, starting at n=1.

Original entry on oeis.org

3, 20, 165, 1814, 25215, 422800, 8284753, 185549202, 4672333603, 130609758204, 4012046505613, 134303337007166, 4865394495960599, 189626416079163448, 7910956276398901049, 351720053331418595386, 16600716065137840118363
Offset: 1

Views

Author

Keywords

Programs

  • Mathematica
    lst={};s=0;Do[s+=n^(n+1)+(n+1)^n;AppendTo[lst,s],{n,4!}];lst
    Accumulate[Table[n^(n+1)+(n+1)^n,{n,20}]] (* Harvey P. Dale, Oct 02 2018 *)

Formula

s+=n^(n+1)+(n+1)^n.

Extensions

Edited by N. J. A. Sloane, Oct 09 2008

A007925 a(n) = n^(n+1) - (n+1)^n.

Original entry on oeis.org

-1, -1, -1, 17, 399, 7849, 162287, 3667649, 91171007, 2486784401, 74062575399, 2395420006033, 83695120256591, 3143661612445145, 126375169532421599, 5415486851106043649, 246486713303685957375, 11877172892329028459041, 604107995057426434824791
Offset: 0

Views

Author

Dennis S. Kluk (mathemagician(AT)ameritech.net)

Keywords

Comments

From Mathew Englander, Jul 07 2020: (Start)
All a(n) are odd and for n even, a(n) == 3 (mod 4); for n odd and n != 1, a(n) == 1 (mod 4).
The correspondence between n and a(n) when considered mod 6 is as follows: for n == 0, 1, 2, or 3, a(n) == 5; for n == 4, a(n) == 3; for n == 5, a(n) == 1.
For all n, a(n)+1 is a multiple of n^2.
For n odd and n >= 3, a(n)-1 is a multiple of (n+1)^2.
For n even and n >= 0, a(n)+1 is a multiple of (n+1)^2.
For proofs of the above, see the Englander link. (End)

Examples

			a(2) = 1^2 - 2^1 = -1,
a(4) = 3^4 - 4^3 = 17.
		

References

  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.

Crossrefs

Programs

Formula

Asymptotic expression for a(n) is a(n) ~ n^n * (n - e). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001
From Mathew Englander, Jul 07 2020: (Start)
a(n) = A111454(n+4) - 1.
a(n) = A055651(n, n+1).
a(n) = A220417(n+1, n) for n >= 1.
a(n) = A007778(n) - A000169(n+1).
(End)
E.g.f.: LambertW(-x)/((1+LambertW(-x))*x)-LambertW(-x)/(1+LambertW(-x))^3. - Alois P. Heinz, Jul 04 2022

A055652 Table T(m,k)=m^k+k^m (with 0^0 taken to be 1) as square array read by antidiagonals.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 8, 4, 1, 1, 5, 17, 17, 5, 1, 1, 6, 32, 54, 32, 6, 1, 1, 7, 57, 145, 145, 57, 7, 1, 1, 8, 100, 368, 512, 368, 100, 8, 1, 1, 9, 177, 945, 1649, 1649, 945, 177, 9, 1, 1, 10, 320, 2530, 5392, 6250, 5392, 2530, 320, 10, 1, 1, 11, 593, 7073
Offset: 0

Views

Author

Henry Bottomley, Jun 08 2000

Keywords

Crossrefs

Columns and rows are A000012 (apart from first term), A000027, A001580, A001585, A001589, A001593 etc. Diagonals include A013499 (apart from first two terms), A051442, A051489.
Cf. A055651.
Contribution from Franklin T. Adams-Watters, Oct 26 2009: (Start)
Main diagonal is 2 * A000312. More diagonals: A051442, A051489, A155539.
Cf. A076980, A156353, A156354. (End)

Formula

E.g.f. Sum(n,m, T(n,m)/(n! m!)) = e^(x e^y) + e^(y e^x). [From Franklin T. Adams-Watters, Oct 26 2009]

A073499 Numbers k such that k^(k+1) + (k+1)^k is prime.

Original entry on oeis.org

1, 2, 80, 342, 848, 1194, 2658, 4790, 9376
Offset: 1

Views

Author

Rick L. Shepherd, Aug 05 2002

Keywords

Comments

a(10) > 20000. - Michael S. Branicky, Apr 13 2025

Examples

			1^2 + 2^1 = 3 and 2^3 + 3^2 = 17 are the primes corresponding to the first two terms. The next five terms correspond to primes of 155, 870, 2487, 3678 and 9106 decimal digits.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[n^(n + 1) + (n + 1)^n], Print[n]], {n, 1, 1650}]
  • PARI
    for(n=1,1650, if(isprime((n^(n+1))+((n+1)^n)), print1(n,",")))

Extensions

Edited by Robert G. Wilson v, Aug 08 2002
a(7) from Charles R Greathouse IV, Jan 13 2012
a(8) from Charles R Greathouse IV, Jan 17 2012
a(9) found by Alexander Adamchuk, Apr 09 2007 and shown to be a(9) by Charles R Greathouse IV, Jan 27 2012

A051489 a(n) = n^(n+2) + (n+2)^n.

Original entry on oeis.org

1, 4, 32, 368, 5392, 94932, 1941760, 45136576, 1173741824, 33739007300, 1061917364224, 36314872537968, 1340612376924160, 53132088082450132, 2250010931847299072, 101388548387203175168, 4843806013966239465472
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n^(n+2) + (n+2)^n: n in [0..30]]; // G. C. Greubel, Jul 14 2021
    
  • Mathematica
    Table[n^(n+2)+(n+2)^n,{n,0,20}] (* Harvey P. Dale, Jul 28 2025 *)
  • Sage
    [n^(n+2) + (n+2)^n for n in (0..30)] # G. C. Greubel, Jul 14 2021

A051443 a(n) = n^(n+1)*(n+1)^n.

Original entry on oeis.org

0, 2, 72, 5184, 640000, 121500000, 32934190464, 12089663946752, 5777633090469888, 3486784401000000000, 2593742460100000000000, 2331878554708454877954048, 2492736806448711465154117632, 3125153805191532199063557103616, 4541487905530112153400000000000000
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

A155539 a(n) = n^(n+3) + (n+3)^n.

Original entry on oeis.org

1, 5, 57, 945, 18785, 423393, 10609137, 292475249, 8804293473, 287589316833, 10137858491849, 383799398752905, 15536767912476993, 669920208810550337, 30659724555890596833, 1484638520651877849057, 75846305139481944586817
Offset: 0

Views

Author

Keywords

Comments

1^4 + 4^1 = 5, 2^5 + 5^2 = 57, ...

Crossrefs

Programs

  • Magma
    [n^(n+3)+(n+3)^n: n in [0..20] ]; // Vincenzo Librandi, Aug 25 2011
  • Mathematica
    lst={};Do[m=n+3;q=n^m+m^n;AppendTo[lst,q],{n,0,4!}];lst
    Table[n^(n+3)+(n+3)^n,{n,0,20}] (* Harvey P. Dale, Aug 18 2024 *)

Extensions

Offset corrected by Arkadiusz Wesolowski, Aug 24 2011

A258389 a(n) = (n^(n+1)-(n-1)^n) + ((n+1)^n-n^(n-1)).

Original entry on oeis.org

2, 14, 128, 1504, 21752, 374184, 7464368, 169402496, 4309519952, 121450640200, 3755499322808, 126409853754144, 4600799868451880, 180029930424249416, 7536568838736534752, 336087767194699956736, 15905186914751401828640, 796113699641442496367496
Offset: 1

Views

Author

Daniel Suteu, May 28 2015

Keywords

Examples

			For a(3) = (3^(3+1)-(3-1)^3) + ((3+1)^3-3^(3-1)) = (3^4 - 2^3) + (4^3 - 3^2) = 128.
		

Crossrefs

Programs

  • Magma
    [(n^(n+1)-(n-1)^n) + ((n+1)^n-n^(n-1)): n in [1..20]]; // Vincenzo Librandi, May 29 2015
  • Mathematica
    Array[#^(# + 1) - (# - 1)^# + ((# + 1)^# - #^(# - 1)) &, 20] (* Vincenzo Librandi, May 29 2015 *)
  • Sidef
    func a(n) {
         ((n+1)**n - n**(n-1)) -
         ((n-1)**n - n**(n+1))
    };
    1.to(Math.inf).each { |n|
        say a(n);
    };
    

Formula

a(n) = (n^(n+1)-(n-1)^n) + ((n+1)^n-n^(n-1)) = A084363(n) + A178922(n).
a(n) = A051442(n) - A051442(n-1). - Mathew Englander, Jul 08 2020

A161473 Primes of the form k^(k+1)+(k+1)^k.

Original entry on oeis.org

3, 17, 14612087592038378751152858509524512533536096028044190178822935218486730194880516808459166772134240378240755073828170296740373082348622309614668344831750401
Offset: 1

Views

Author

Keywords

Comments

The associated k are in A073499. [R. J. Mathar, Jun 12 2009]

Examples

			2^1+1^2=3. 2^3+3^2=17.
		

Programs

  • Mathematica
    lst={};Do[p=n^(n+1)+(n+1)^n;If[PrimeQ[p],AppendTo[lst,p]],{n,2*5!}];lst

Formula

A051442 INTERSECT A000040. [R. J. Mathar, Jun 12 2009]

Extensions

Definition simplified by R. J. Mathar, Jun 12 2009
Showing 1-10 of 12 results. Next