cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A094133 Leyland primes: 3, together with primes of form x^y + y^x, for x > y > 1.

Original entry on oeis.org

3, 17, 593, 32993, 2097593, 8589935681, 59604644783353249, 523347633027360537213687137, 43143988327398957279342419750374600193, 4318114567396436564035293097707729426477458833, 5052785737795758503064406447721934417290878968063369478337
Offset: 1

Views

Author

Lekraj Beedassy, May 04 2004

Keywords

Comments

Contains A061119 as a subsequence.

Examples

			2^1 + 1^2, 3^2 + 2^3, 9^2 + 2^9, 15^2 + 2^15, 21^2 + 2^21, 33^2 + 2^33, 24^5 + 5^24, 56^3 + 3^56, 32^15 + 15^32, 54^7 + 7^54, 38^33 + 33^38.
		

Crossrefs

Cf. A061119 (primes where one of x,y is 2), A064539 (non-2 values where one of x,y is 2), A253471 (non-3 values where one of x,y is 3), A073499 (subset listing y where x = y+1), A076980 (Leyland numbers).

Programs

  • Maple
    N:= 10^100: # to get all terms <= N
    A:= {3}:
    for n from 2 while 2*n^n < N do
      for k from n+1 do if igcd(n,k)=1 then
         a:= n^k + k^n;
         if a > N then break fi;
         if isprime(a) then A:= A union {a} fi fi;
      od
    od:
    A; # if using Maple 11 or earlier, uncomment the next line
    # sort(convert(A,list)); # Robert Israel, Apr 13 2015
  • Mathematica
    a = {3}; Do[Do[k = m^n + n^m; If[PrimeQ[k], AppendTo[a, k]], {m, 2, n}], {n, 2, 100}]; Union[a] (* Artur Jasinski *)
    Prepend[Flatten[Map[Function[n, Map[Function[m, If[PrimeQ[m^n + n^m], m^n + n^m, Sequence[], Nothing]], Range[2, n]]], Range[2, 50]], 1], 3]//Union (* Mikk Heidemaa, Mar 27 2025 *)
  • PARI
    f(x)=my(L=log(x)); L/lambertw(L) \\ finds y such that y^y == x
    list(lim)=my(v=List()); for(x=2,f(lim/2), my(y=x+1,t); while((t=x^y+y^x)<=lim, if(ispseudoprime(t), listput(v,t)); y+=2)); Set(v) \\ Charles R Greathouse IV, Oct 28 2014

Extensions

Corrected and extended by Jens Kruse Andersen, Oct 26 2007
Edited by Hans Havermann, Apr 10 2015

A072179 Numbers n such that n^(n+1) - (n+1)^n is prime.

Original entry on oeis.org

3, 6, 9, 12, 44, 883, 1277
Offset: 1

Views

Author

Daniel Gronau (Daniel.Gronau(AT)gmx.de), Jun 30 2002

Keywords

Comments

Some of the larger entries may only correspond to probable primes.
6279 is a term. - Alexander Adamchuk, Apr 09 2007

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ n^(n + 1) - (n + 1)^n], Print[n]], {n, 1, 2000}]
  • PARI
    is(n)=ispseudoprime(n^(n+1)-(n+1)^n) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

Edited and extended by Robert G. Wilson v, Jul 02 2002

A085682 Numbers k such that k^k - (k-1)^k is prime.

Original entry on oeis.org

2, 3, 7, 43, 79, 463, 1277
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 17 2003

Keywords

Comments

Each term of the sequence must be prime.
a(8) > 30000. - Michael S. Branicky, Dec 06 2024

Examples

			7 is in the sequence because 7^7 - 6^7 = 543607 is prime.
		

Crossrefs

Programs

  • PARI
    isok(k) = ispseudoprime(k^k - (k-1)^k); \\ Jinyuan Wang, Mar 19 2020

A084852 Numbers k such that k^(k+1) + (k+1)^k - k(k+1) is prime.

Original entry on oeis.org

2, 5, 6, 7, 8, 9, 14, 37, 81, 143, 302
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 13 2003

Keywords

Comments

a(12) > 15000. - Michael S. Branicky, Aug 09 2024

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n^(n+1)+(n+1)^n-n(n+1)], Print[n]], {n, 1000}]
  • PARI
    is(n)=ispseudoprime(n^(n+1)+(n+1)^n-n*(n+1)) \\ Charles R Greathouse IV, Jun 12 2017

A161473 Primes of the form k^(k+1)+(k+1)^k.

Original entry on oeis.org

3, 17, 14612087592038378751152858509524512533536096028044190178822935218486730194880516808459166772134240378240755073828170296740373082348622309614668344831750401
Offset: 1

Views

Author

Keywords

Comments

The associated k are in A073499. [R. J. Mathar, Jun 12 2009]

Examples

			2^1+1^2=3. 2^3+3^2=17.
		

Programs

  • Mathematica
    lst={};Do[p=n^(n+1)+(n+1)^n;If[PrimeQ[p],AppendTo[lst,p]],{n,2*5!}];lst

Formula

A051442 INTERSECT A000040. [R. J. Mathar, Jun 12 2009]

Extensions

Definition simplified by R. J. Mathar, Jun 12 2009

A084853 Numbers k such that k^(k+1) + (k+1)^k + k(k+1) is prime.

Original entry on oeis.org

1, 2, 3, 4, 5, 27
Offset: 1

Views

Author

Farideh Firoozbakht, Jul 13 2003

Keywords

Comments

a(7) > 10600. - Michael S. Branicky, Mar 21 2023

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[n^(n+1)+(n+1)^n+n(n+1)], Print[n]], {n, 0, 1000}]
    Select[Range[30],PrimeQ[#^(#+1)+(#+1)^#+#(#+1)]&] (* Harvey P. Dale, May 28 2016 *)
  • PARI
    is(n)=ispseudoprime(n^(n+1)+(n+1)^n+n*(n+1)) \\ Charles R Greathouse IV, Jun 13 2017
Showing 1-6 of 6 results.