cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A136434 Duplicate of A121670.

Original entry on oeis.org

0, -2, 2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158
Offset: 0

Views

Author

Keywords

A153641 Nonzero coefficients of the Swiss-Knife polynomials for the computation of Euler, tangent, and Bernoulli numbers (triangle read by rows).

Original entry on oeis.org

1, 1, 1, -1, 1, -3, 1, -6, 5, 1, -10, 25, 1, -15, 75, -61, 1, -21, 175, -427, 1, -28, 350, -1708, 1385, 1, -36, 630, -5124, 12465, 1, -45, 1050, -12810, 62325, -50521, 1, -55, 1650, -28182, 228525, -555731, 1, -66, 2475, -56364, 685575, -3334386, 2702765, 1
Offset: 0

Views

Author

Peter Luschny, Dec 29 2008

Keywords

Comments

In the following the expression [n odd] is 1 if n is odd, 0 otherwise.
(+) W_n(0) = E_n are the Euler (or secant) numbers A122045.
(+) W_n(1) = T_n are the signed tangent numbers, see A009006.
(+) W_{n-1}(1) n / (4^n - 2^n) = B_n gives for n > 1 the Bernoulli number A027641/A027642.
(+) W_n(-1) 2^{-n}(n+1) = G_n the Genocchi number A036968.
(+) W_n(1/2) 2^{n} are the signed generalized Euler (Springer) number, see A001586.
(+) | W_n([n odd]) | the number of alternating permutations A000111.
(+) | W_n([n odd]) / n! | for 0<=n the Euler zeta number A099612/A099617 (see Wikipedia on Bernoulli number). - Peter Luschny, Dec 29 2008
The diagonals in the full triangle (with zero coefficients) of the polynomials have the general form E(k)*binomial(n+k,k) (k>=0 fixed, n=0,1,...) where E(n) are the Euler numbers in the enumeration A122045. For k=2 we find the triangular numbers A000217 and for k=4 A154286. - Peter Luschny, Jan 06 2009
From Peter Bala, Jun 10 2009: (Start)
The Swiss-Knife polynomials W_n(x) may be expressed in terms of the Bernoulli polynomials B(n,x) as
... W_n(x) = 4^(n+1)/(2*n+2)*[B(n+1,(x+3)/4) - B(n+1,(x+1)/4)].
The Swiss-Knife polynomials are, apart from a multiplying factor, examples of generalized Bernoulli polynomials.
Let X be the Dirichlet character modulus 4 defined by X(4*n+1) = 1, X(4*n+3) = -1 and X(2*n) = 0. The generalized Bernoulli polynomials B(X;n,x), n = 1,2,..., associated with the character X are defined by means of the generating function
... t*exp(x*t)*(exp(t)-exp(3*t))/(exp(4*t)-1) = sum {n = 1..inf} B(X;n,x)*t^n/n!.
The first few values are B(X;1,x) = -1/2, B(X;2,x) = -x, B(X,3,x) = -3/2*(x^2-1) and B(X;4,x) = -2*(x^3-3*x).
In general, W_n(x) = -2/(n+1)*B(X;n+1,x).
For the theory of generalized Bernoulli polynomials associated to a periodic arithmetical function see [Cohen, Section 9.4].
The generalized Bernoulli polynomials may be used to evaluate twisted sums of k-th powers. For the present case the result is
sum{n = 0..4*N-1} X(n)*n^k = 1^k - 3^k + 5^k - 7^k + ... - (4*N-1)^k
= [B(X;k+1,4*N) - B(X;k+1,0)]/(k+1) = [W_k(0) - W_k(4*N)]/2.
For the proof apply [Cohen, Corollary 9.4.17 with m = 4 and x = 0].
The generalized Bernoulli polynomials and the Swiss-Knife polynomials are also related to infinite sums of powers through their Fourier series - see the formula section below. For a table of the coefficients of generalized Bernoulli polynomials attached to a Dirichlet character modulus 8 see A151751.
(End)
The Swiss-Knife polynomials provide a general formula for alternating sums of powers similar to the formula which are provided by the Bernoulli polynomials for non-alternating sums of powers (see the Luschny link). Sequences covered by this formula include A001057, A062393, A062392, A011934, A144129, A077221, A137501, A046092. - Peter Luschny, Jul 12 2009
The greatest common divisor of the nonzero coefficients of the decapitated Swiss-Knife polynomials is exp(Lambda(n)), where Lambda(n) is the von Mangoldt function for odd primes, symbolically:
gcd(coeffs(SKP_{n}(x) - x^n)) = A155457(n) (n>1). - Peter Luschny, Dec 16 2009
Another version is at A119879. - Philippe Deléham, Oct 26 2013

Examples

			1
x
x^2  -1
x^3  -3x
x^4  -6x^2   +5
x^5 -10x^3  +25x
x^6 -15x^4  +75x^2  -61
x^7 -21x^5 +175x^3 -427x
		

References

  • H. Cohen, Number Theory - Volume II: Analytic and Modern Tools, Graduate Texts in Mathematics. Springer-Verlag. [From Peter Bala, Jun 10 2009]

Crossrefs

W_n(k), k=0,1,...
W_0: 1, 1, 1, 1, 1, 1, ........ A000012
W_1: 0, 1, 2, 3, 4, 5, ........ A001477
W_2: -1, 0, 3, 8, 15, 24, ........ A067998
W_3: 0, -2, 2, 18, 52, 110, ........ A121670
W_4: 5, 0, -3, 32, 165, 480, ........
W_n(k), n=0,1,...
k=0: 1, 0, -1, 0, 5, 0, -61, ... A122045
k=1: 1, 1, 0, -2, 0, 16, 0, ... A155585
k=2: 1, 2, 3, 2, -3, 2, 63, ... A119880
k=3: 1, 3, 8, 18, 32, 48, 128, ... A119881
k=4: 1, 4, 15, 52, 165, 484, ........ [Peter Luschny, Jul 07 2009]

Programs

  • Maple
    w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end:
    # Coefficients with zeros:
    seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8);
    # Recursion
    W := proc(n,z) option remember; local k,p;
    if n = 0 then 1 else p := irem(n+1,2);
    z^n - p + add(`if`(irem(k,2)=1,0,
    W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end:
    # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
  • Mathematica
    max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *)
    sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *)
    Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
  • Sage
    def A046978(k):
        if k % 4 == 0:
            return 0
        return (-1)**(k // 4)
    def A153641_poly(n, x):
        return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n)))
    for n in (0..7): print(A153641_poly(n, x))  # Peter Luschny, Oct 24 2011

Formula

W_n(x) = Sum_{k=0..n}{v=0..k} (-1)^v binomial(k,v)*c_k*(x+v+1)^n where c_k = frac((-1)^(floor(k/4))/2^(floor(k/2))) [4 not div k] (Iverson notation).
From Peter Bala, Jun 10 2009: (Start)
E.g.f.: 2*exp(x*t)*(exp(t)-exp(3*t))/(1-exp(4*t))= 1 + x*t + (x^2-1)*t^2/2! + (x^3-3*x)*t^3/3! + ....
W_n(x) = 1/(2*n+2)*Sum_{k=0..n+1} 1/(k+1)*Sum_{i=0..k} (-1)^i*binomial(k,i)*((x+4*i+3)^(n+1) - (x+4*i+1)^(n+1)).
Fourier series expansion for the generalized Bernoulli polynomials:
B(X;2*n,x) = (-1)^n*(2/Pi)^(2*n)*(2*n)! * {sin(Pi*x/2)/1^(2*n) - sin(3*Pi*x/2)/3^(2*n) + sin(5*Pi*x/2)/5^(2*n) - ...}, valid for 0 <= x <= 1 when n >= 1.
B(X;2*n+1,x) = (-1)^(n+1)*(2/Pi)^(2*n+1)*(2*n+1)! * {cos(Pi*x/2)/1^(2*n+1) - cos(3*Pi*x/2)/3^(2*n+1) + cos(5*Pi*x/2)/5^(2*n+1) - ...}, valid for 0 <= x <= 1 when n >= 1 and for 0 <= x < 1 when n = 0.
(End)
E.g.f.: exp(x*t) * sech(t). - Peter Luschny, Jul 07 2009
O.g.f. as a J-fraction: z/(1-x*z+z^2/(1-x*z+4*z^2/(1-x*z+9*z^2/(1-x*z+...)))) = z + x*z^2 + (x^2-1)*z^3 + (x^3-3*x)*z^4 + .... - Peter Bala, Mar 11 2012
Conjectural o.g.f.: Sum_{n >= 0} (1/2^((n-1)/2))*cos((n+1)*Pi/4)*( Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 - (k + x)*t) ) = 1 + x*t + (x^2 - 1)*t^2 + (x^3 - 3*x)*t^3 + ... (checked up to O(t^13)), which leads to W_n(x) = Sum_{k = 0..n} 1/2^((k - 1)/2)*cos((k + 1)*Pi/4)*( Sum_{j = 0..k} (-1)^j*binomial(k, j)*(j + x)^n ). - Peter Bala, Oct 03 2016

A080663 a(n) = 3*n^2 - 1.

Original entry on oeis.org

2, 11, 26, 47, 74, 107, 146, 191, 242, 299, 362, 431, 506, 587, 674, 767, 866, 971, 1082, 1199, 1322, 1451, 1586, 1727, 1874, 2027, 2186, 2351, 2522, 2699, 2882, 3071, 3266, 3467, 3674, 3887, 4106, 4331, 4562, 4799, 5042, 5291, 5546, 5807, 6074, 6347, 6626
Offset: 1

Views

Author

Cino Hilliard, Mar 01 2003

Keywords

Comments

These numbers cannot be perfect squares. See the Hilliard link for a proof.
2nd elementary symmetric polynomial of n, n + 1 and n + 2: n(n+1) + n(n+2) + (n+1)(n+2). - Zak Seidov, Mar 23 2005
This sequence equals for n >= 2 the third right hand column of triangle A165674. Its recurrence relation leads to Pascal's triangle A007318. Crowley's formula for A080663(n-1) leads to Wiggen's triangle A028421 and the o.g.f. of this sequence, without the first term, leads to Wood's polynomials A126671. See also A165676, A165677, A165678 and A165679. - Johannes W. Meijer, Oct 16 2009
The Diophantine equation x(x+1) + (x+2)(x+3) = (x+y)^2 + (x-y)^2 has solutions x = a(n), y = 3n. - Bruno Berselli, Mar 29 2013
A simpler proof that these numbers can't be perfect squares can easily be constructed using congruences: If the equation x^2 = 3y^2 - 1 has a solution in positive integers, then x^2 = 2 mod 3. Obviously we can't have x = 0 mod 3, and x = 1 mod 3 doesn't work either because then x^2 = 1 mod 3 also. That leaves x = 2 mod 3, but then x^2 = 1 mod 3. - Alonso del Arte, Oct 19 2013
2*a(n+1) is surface area of a rectangular prism with consecutive integer sides: n, n+1, and n+2, (n>0). - Wesley Ivan Hurt, Sep 06 2014
Numbers m such that 3*m+3 is a square. So, these are the numbers m such that the system of equations x=sqrt(m-2yz), y=sqrt(m+1-2xz), z=sqrt(m+2-2xy) admits 3 real positive solutions whose sum is an integer. See the Rechtman link. - Michel Marcus, Jun 06 2020

References

  • Ethan D. Bolker, Elementary Number Theory: An Algebraic Approach. Mineola, New York: Dover Publications (1969, reprinted 2007): p. 7, Problem 6.6.
  • E. Grosswald, Topics from the Theory of Numbers, 1966 p 64 problem 11

Crossrefs

Programs

Formula

a(n) = -Re((1 + n*i)^3) where i=sqrt(-1). - Gary W. Adamson, Aug 14 2006
a(n) = 3*n^2 - 1. - Stephen Crowley, Jul 06 2009
a(n) = a(n-1) - 3*a(n-2) + 3*a(n-3). - Johannes W. Meijer, Oct 16 2009
G.f.: x*(2 + 5*x - x^2)/(1-x)^3. - Joerg Arndt, Sep 06 2014
a(n) = a(n-1) + 6*n - 3 for n > 1. - Vincenzo Librandi, Aug 08 2010
E.g.f.: 1 + exp(x)*(3*x^2 + 3*x - 1). - Stefano Spezia, Feb 01 2020
From Amiram Eldar, Feb 04 2021: (Start)
Sum_{n>=1} 1/a(n) = (1 - (Pi/sqrt(3))*cot(Pi/sqrt(3)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = ((Pi/sqrt(3))*csc(Pi/sqrt(3)) - 1)/2.
Product_{n>=1} (1 + 1/a(n)) = (Pi/sqrt(3))*csc(Pi/sqrt(3)).
Product_{n>=1} (1 - 1/a(n)) = csc(Pi/sqrt(3))*sin(sqrt(2/3)*Pi)/sqrt(2). (End)
a(n) = A005449(n) + A115067(n). - Leo Tavares, May 25 2022
a(n) = (n-1)*n + (n-1)*(n+1) + n*(n+1), for n >= 1. See the Zak Seidov comment above. - Wolfdieter Lang, Aug 15 2024

A121672 Real part of (n + i)^5.

Original entry on oeis.org

0, -4, -38, -12, 404, 1900, 5646, 13412, 27688, 51804, 90050, 147796, 231612, 349388, 510454, 725700, 1007696, 1370812, 1831338, 2407604, 3120100, 3991596, 5047262, 6314788, 7824504, 9609500, 11705746, 14152212, 16990988, 20267404, 24030150
Offset: 0

Views

Author

Gary W. Adamson, Aug 14 2006

Keywords

Comments

The companion sequence A121671 uses the operation (1 + n*i)^5.

Examples

			a(4) = 404 since (4 + i)^5 = (404 + 1121i) where 1121 = A121671(4).
		

Crossrefs

Programs

Formula

G.f.: -2*x*(2+7*x-78*x^2+7*x^3+2*x^4)/(1-x)^6. - Bruno Berselli, Mar 01 2012
a(n) = n*(n^4-10*n^2+5). - Bruno Berselli, Mar 01 2012
a(n) = (1+n^2)^(5/2)*sin(5*arctan(n)). - Gerry Martens, Apr 06 2024

Extensions

Corrected and extended by Harvey P. Dale, Mar 01 2012

A244490 Triangle read by rows: T(n,k) (0 <= k <= n) = Sum_{i=0..[k/2]} (-1)^i*binomial(k,2*i)*(2*i-1)!!*n^(k-2*i).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 8, 18, 1, 4, 15, 52, 163, 1, 5, 24, 110, 478, 1950, 1, 6, 35, 198, 1083, 5706, 28821, 1, 7, 48, 322, 2110, 13482, 83824, 505876, 1, 8, 63, 488, 3715, 27768, 203569, 1461944, 10270569, 1, 9, 80, 702, 6078, 51894, 436656, 3618540, 29510268, 236644092, 1, 10, 99, 970, 9403, 90150, 854485, 8003950, 74058105, 676549450, 6098971555
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2014

Keywords

Comments

East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f : [k] -> [n]: f has no 2-cycles}). For instance T(3,3) = 18 because there are 27 functions [3] -> [3], 9 of which have a 2-cycle. - Peter Luschny, Oct 05 2016

Examples

			Triangle begins:
1
1 1
1 2 3
1 3 8 18
1 4 15 52 163
1 5 24 110 478 1950
1 6 35 198 1083 5706 28821
1 7 48 322 2110 13482 83824 505876
1 8 63 488 3715 27768 203569 1461944 10270569
1 9 80 702 6078 51894 436656 3618540 29510268 236644092
...
		

Crossrefs

As has been noticed by Tom Copeland: T(n,0) = A000012(n), T(n,1) = A001477(n) for n>=1, T(n,2) = A067998(n+1) for n>=3, T(n,3) = A121670(n) for n>=3.
Cf. A276999.

Programs

  • Maple
    T := (n,k) -> add((-1)^i*binomial(k,2*i)*doublefactorial(2*i-1)*n^(k-2*i), i=0..k/2):
    seq(seq(T(n,k), k=0..n), n=0..10); # Peter Luschny, Oct 05 2016
  • Mathematica
    Table[Simplify[2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2016 *)
  • Sage
    def T(n, k):
        @cached_function
        def h(n, x):
            if n == 0: return 1
            if n == 1: return 2*x
            return 2*(x*h(n-1,x)-(n-1)*h(n-2,x))
        return h(k, n/sqrt(2))/2^(k/2)
    for n in range(10):
        print([T(n,k) for k in (0..n)]) # Peter Luschny, Oct 05 2016

Formula

From Peter Luschny, Oct 05 2016: (Start)
T(n,k) = 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = 2^((k-1)/2)*n*KummerU((1-k)/2, 3/2, n^2/2) for n>=1.
T(n,k) = n^k*hypergeom([-k/2, (1-k)/2], [], -2/n^2) for n>=1. (End)

A231123 Array T(n,k) read by antidiagonals: T(n,k) = sum(i=0...n, (-1)^(n+i) * C(n+i,2i) * n/(2i+1) * k^(2i+1) ), n>0, k>1.

Original entry on oeis.org

2, 2, 18, 2, 123, 52, 2, 843, 724, 110, 2, 5778, 10084, 2525, 198, 2, 39603, 140452, 57965, 6726, 322, 2, 271443, 1956244, 1330670, 228486, 15127, 488, 2, 1860498, 27246964, 30547445, 7761798, 710647, 30248, 702, 2, 12752043, 379501252, 701260565, 263672646
Offset: 2

Views

Author

Ralf Stephan, Nov 04 2013

Keywords

Comments

The polynomial x^(4n+2) - T(n,k)*x^(2n+1) + 1 is reducible. Example: x^10-123x^5+1=(x^2-3x+1)(x^8+3x^7+8x^6+21x^5+55x^4+21x^3+8x^2+3x+1). It is conjectured that for prime p=2n+1, these are the only values where this holds.

Examples

			Array starts
2, 18, 52, 110, 198, 322, 488, 702, 970,...
2, 123, 724, 2525, 6726, 15127, 30248, 55449, 95050,...
2, 843, 10084, 57965, 228486, 710647, 1874888, 4379769, 9313930,...
2, 5778, 140452, 1330670, 7761798, 33385282, 116212808, 345946302,...
2, 39603, 1956244, 30547445, 263672646, 1568397607, 7203319208,...
		

References

  • A. Schinzel, On reducible trinomials III. In: Selecta, Vol. I, European Mathematical Society 2007, pp. 625-626.

Programs

  • PARI
    T(i,k)=n=2*i+1;sum(m=0,(n-1)/2,(-1)^(m+(n-1)/2)*n*binomial((n+2*m+1)/2-1,2*m)/(2*m+1)*k^(2*m+1))

Formula

T(,2) = 2, T(1,n) = A121670(n), T(2,n) = A230586(n).
T(n,k) = sum(i=1..n, (-1)^i * A111125(n,i) * k^(2i+1) ).

A272870 Real part of (n + i)^4.

Original entry on oeis.org

1, -4, -7, 28, 161, 476, 1081, 2108, 3713, 6076, 9401, 13916, 19873, 27548, 37241, 49276, 64001, 81788, 103033, 128156, 157601, 191836, 231353, 276668, 328321, 386876, 452921, 527068, 609953, 702236, 804601, 917756, 1042433, 1179388, 1329401, 1493276
Offset: 0

Views

Author

Colin Barker, May 08 2016

Keywords

Comments

a(1) and a(2) are the only two negative terms in the sequence. Since (n + i)^2 = (n^2 - 1) + 2ni, it follows that (n + i)^4 = (n^2 - 1 + 2ni)^2 = (n^4 - 6n^2 + 1) + (4n^3 - 4n)i, so the real part of (n + i)^4 is n^4 - 6n^2 + 1. Then n^4 + 1 > 6n^2 for all n > 2, ensuring a(n) is positive for all n > 2. - Alonso del Arte, Jun 04 2016

Examples

			a(5) = 476 because (5 + i)^4 = 476 + 480*i.
		

Crossrefs

Cf. A272871 (imaginary part).
Cf. A121670 ((n+i)^3), A121672 ((n+i)^5).

Programs

  • Mathematica
    Table[Re[(n + I)^4], {n, 0, 35}] (* or *)
    Table[n^4 - 6 n^2 + 1, {n, 0, 35}] (* or *)
    CoefficientList[Series[(1 - 9 x + 23 x^2 + 13 x^3 - 4 x^4)/(1 - x)^5, {x, 0, 35}], x] (* Michael De Vlieger, May 08 2016 *)
  • PARI
    a(n) = n^4-6*n^2+1
    
  • PARI
    vector(50, n, n--; real((n+I)^4))
    
  • PARI
    Vec((1-9*x+23*x^2+13*x^3-4*x^4)/(1-x)^5 + O(x^50))

Formula

a(n) = n^4 - 6*n^2 + 1.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (1-9*x+23*x^2+13*x^3-4*x^4) / (1-x)^5.
E.g.f.: (1 - 5*x + x^2 + 6*x^3 + x^4)*exp(x). - Ilya Gutkovskiy, May 08 2016

A247498 Generalized Euler numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k] exp(n*x)*sech(x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 0, 0, 2, 1, 5, -2, 3, 3, 1, 0, 0, 2, 8, 4, 1, -61, 16, -3, 18, 15, 5, 1, 0, 0, 2, 32, 52, 24, 6, 1, 1385, -272, 63, 48, 165, 110, 35, 7, 1, 0, 0, 2, 128, 484, 480, 198, 48, 8, 1, -50521, 7936, -1383, 528, 1395, 2000, 1085, 322, 63, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 14 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Euler secant and Euler tangent numbers (which are in their compressed and signless form A000364 resp. A000182 or interleaved in A000111). The cases n=0 and n=1 reduce to their expanded and signed forms A122045 and A155585. Moreover the columns are the values of the Swiss-Knife polynomials A153641 evaluated at the nonnegative integers.
Subsequences [3,3,1], [8,4,1], [15,5,1], [24,6,1], [35,7,1], [48,8,1], [63,9,1] found in rows of this entry, as a triangular array, are present in the antidiagonals of Table 5 of the East and Gray reference (A244490), and some subsequences in the rows of Table 5 are found in the antidiagonals of this entry, including [3,2,1] and [1,1]. Equivalently, the first four columns of Table 5 are embedded in this entry viewed as a square array on the table page. An explicit formula with combinatorial interpretations for these numbers is provided in the reference, and others are known for the corresponding columns for the modified Hermite polynomials of A244490. - Tom Copeland, Oct 04 2016

Examples

			Square array starts:
  [n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]     [8]
  [0]   1, 0, -1,   0,    5,    0,   -61,      0,   1385, ... A122045
  [1]   1, 1,  0,  -2,    0,   16,     0,   -272,      0, ... A155585
  [2]   1, 2,  3,   2,   -3,    2,    63,      2,  -1383, ... A119880
  [3]   1, 3,  8,  18,   32,   48,   128,    528,    512, ... A119881
  [4]   1, 4, 15,  52,  165,  484,  1395,   4372,  14505, ...
  [5]   1, 5, 24, 110,  480, 2000,  8064,  32240, 130560, ... A225116
  [6]   1, 6, 35, 198, 1085, 5766, 29855, 151878, 766745, ...
  A000012, A001477, A067998, A121670, ...
Triangular array starts:
                1,
              0,  1,
           -1,  1,  1,
          0,  0,  2,  1,
        5, -2,  3,  3,  1,
      0,  0,  2,  8,  4,  1,
  -61, 16, -3, 18, 15,  5,  1.
		

Crossrefs

Programs

  • Maple
    # EGF (row)
    egf := n -> exp(n*x)*sech(x):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..8)), n=0..6);
    # Swiss-Knife polynomial (column)
    SKP := proc(n, x) local v, k, A; A := k -> `if`(k mod 4 = 0,0,(-1)^iquo(k,4)); add(2^iquo(-k,2)*A(k+1)*add((-1)^v* binomial(k,v)*(v+x+1)^n,v=0..k), k=0..n); expand(%) end:
    seq(print(seq(SKP(k, n), n=0..9)), k=0..6);
    # OGF (column)
    col := proc(n, len) local T; T := A247501_row(n);
    (-1)^(n+1)*add(T[k+1]/(x-1)^(k+1),k=0..n);
    seq(coeff(series(%,x,len+1),x,j),j=0..len) end:
    seq(print(col(n,8)), n=0..6);
  • Mathematica
    nmax = 10; Clear[row]; row[n_] := row[n] = CoefficientList[Exp[n*x]*Sech[x] + O[x]^(nmax+2), x][[1 ;; nmax+1]]*Range[0, nmax]!;
    rows = Table[row[n], {n, 0, nmax}];
    T[n_, k_] := rows[[n+1, k+1]];
    Table[T[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)

Formula

G.f. for column k: the k-th column consists of the values of the k-th Swiss-Knife polynomial skp_{k}(x) evaluated at x = 0,1,2,...
O.g.f. for column k: Sum_{j=0..k} (-1)^(k+1)*A247501(k,j)/(x-1)^(j+1).
Showing 1-8 of 8 results.