A136434 Duplicate of A121670.
0, -2, 2, 18, 52, 110, 198, 322, 488, 702, 970, 1298, 1692, 2158
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
1 x x^2 -1 x^3 -3x x^4 -6x^2 +5 x^5 -10x^3 +25x x^6 -15x^4 +75x^2 -61 x^7 -21x^5 +175x^3 -427x
w := proc(n,x) local v,k,pow,chen; pow := (a,b) -> if a = 0 and b = 0 then 1 else a^b fi; chen := proc(m) if irem(m+1,4) = 0 then RETURN(0) fi; 1/((-1)^iquo(m+1,4) *2^iquo(m,2)) end; add(add((-1)^v*binomial(k,v)*pow(v+x+1,n)*chen(k),v=0..k), k=0..n) end: # Coefficients with zeros: seq(print(seq(coeff(i!*coeff(series(exp(x*t)*sech(t),t,16),t,i),x,i-n),n=0..i)), i=0..8); # Recursion W := proc(n,z) option remember; local k,p; if n = 0 then 1 else p := irem(n+1,2); z^n - p + add(`if`(irem(k,2)=1,0, W(k,0)*binomial(n,k)*(power(z,n-k)-p)),k=2..n-1) fi end: # Peter Luschny, edited and additions Jul 07 2009, May 13 2010, Oct 24 2011
max = 9; rows = (Reverse[ CoefficientList[ #, x]] & ) /@ CoefficientList[ Series[ Exp[x*t]*Sech[t], {t, 0, max}], t]*Range[0, max]!; par[coefs_] := (p = Partition[ coefs, 2][[All, 1]]; If[ EvenQ[ Length[ coefs]], p, Append[ p, Last[ coefs]]]); Flatten[ par /@ rows] (* Jean-François Alcover, Oct 03 2011, after g.f. *) sk[n_, x_] := Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; Table[CoefficientList[sk[n, x], x] // Reverse // Select[#, # =!= 0 &] &, {n, 0, 13}] // Flatten (* Jean-François Alcover, May 21 2013 *) Flatten@Table[Binomial[n, 2k] EulerE[2k], {n, 0, 12}, {k, 0, n/2}](* Oliver Seipel, Jan 14 2025 *)
def A046978(k): if k % 4 == 0: return 0 return (-1)**(k // 4) def A153641_poly(n, x): return expand(add(2**(-(k // 2))*A046978(k+1)*add((-1)**v*binomial(k,v)*(v+x+1)**n for v in (0..k)) for k in (0..n))) for n in (0..7): print(A153641_poly(n, x)) # Peter Luschny, Oct 24 2011
[3*n^2-1 : n in [1..50]]; // Wesley Ivan Hurt, Sep 04 2014
A080663 := proc(n) return 3*n^2-1: end proc: seq(A080663(n), n=1..50); # Nathaniel Johnston, Oct 16 2013
3*Range[47]^2 - 1 (* Alonso del Arte, Oct 19 2013 *)
list(n) = { for(x=1,n, y = 3*x*x-1; print1(y, ", ") ) } \\ edited by Michel Marcus, Feb 01 2020
Vec(x*(2+5*x-x^2)/(1-x)^3+O(x^66)) \\ Joerg Arndt, Sep 06 2014
a(4) = 404 since (4 + i)^5 = (404 + 1121i) where 1121 = A121671(4).
Re[(Range[0,30]+I)^5] (* Harvey P. Dale, Mar 01 2012 *)
a(n) = real((n + I)^5); \\ Michel Marcus, Dec 19 2020
Triangle begins: 1 1 1 1 2 3 1 3 8 18 1 4 15 52 163 1 5 24 110 478 1950 1 6 35 198 1083 5706 28821 1 7 48 322 2110 13482 83824 505876 1 8 63 488 3715 27768 203569 1461944 10270569 1 9 80 702 6078 51894 436656 3618540 29510268 236644092 ...
T := (n,k) -> add((-1)^i*binomial(k,2*i)*doublefactorial(2*i-1)*n^(k-2*i), i=0..k/2): seq(seq(T(n,k), k=0..n), n=0..10); # Peter Luschny, Oct 05 2016
Table[Simplify[2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k,0,n}] // Flatten (* Peter Luschny, Oct 05 2016 *)
def T(n, k): @cached_function def h(n, x): if n == 0: return 1 if n == 1: return 2*x return 2*(x*h(n-1,x)-(n-1)*h(n-2,x)) return h(k, n/sqrt(2))/2^(k/2) for n in range(10): print([T(n,k) for k in (0..n)]) # Peter Luschny, Oct 05 2016
Array starts 2, 18, 52, 110, 198, 322, 488, 702, 970,... 2, 123, 724, 2525, 6726, 15127, 30248, 55449, 95050,... 2, 843, 10084, 57965, 228486, 710647, 1874888, 4379769, 9313930,... 2, 5778, 140452, 1330670, 7761798, 33385282, 116212808, 345946302,... 2, 39603, 1956244, 30547445, 263672646, 1568397607, 7203319208,...
T(i,k)=n=2*i+1;sum(m=0,(n-1)/2,(-1)^(m+(n-1)/2)*n*binomial((n+2*m+1)/2-1,2*m)/(2*m+1)*k^(2*m+1))
a(5) = 476 because (5 + i)^4 = 476 + 480*i.
Table[Re[(n + I)^4], {n, 0, 35}] (* or *) Table[n^4 - 6 n^2 + 1, {n, 0, 35}] (* or *) CoefficientList[Series[(1 - 9 x + 23 x^2 + 13 x^3 - 4 x^4)/(1 - x)^5, {x, 0, 35}], x] (* Michael De Vlieger, May 08 2016 *)
a(n) = n^4-6*n^2+1
vector(50, n, n--; real((n+I)^4))
Vec((1-9*x+23*x^2+13*x^3-4*x^4)/(1-x)^5 + O(x^50))
Square array starts: [n\k][0][1] [2] [3] [4] [5] [6] [7] [8] [0] 1, 0, -1, 0, 5, 0, -61, 0, 1385, ... A122045 [1] 1, 1, 0, -2, 0, 16, 0, -272, 0, ... A155585 [2] 1, 2, 3, 2, -3, 2, 63, 2, -1383, ... A119880 [3] 1, 3, 8, 18, 32, 48, 128, 528, 512, ... A119881 [4] 1, 4, 15, 52, 165, 484, 1395, 4372, 14505, ... [5] 1, 5, 24, 110, 480, 2000, 8064, 32240, 130560, ... A225116 [6] 1, 6, 35, 198, 1085, 5766, 29855, 151878, 766745, ... A000012, A001477, A067998, A121670, ... Triangular array starts: 1, 0, 1, -1, 1, 1, 0, 0, 2, 1, 5, -2, 3, 3, 1, 0, 0, 2, 8, 4, 1, -61, 16, -3, 18, 15, 5, 1.
# EGF (row) egf := n -> exp(n*x)*sech(x): seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..8)), n=0..6); # Swiss-Knife polynomial (column) SKP := proc(n, x) local v, k, A; A := k -> `if`(k mod 4 = 0,0,(-1)^iquo(k,4)); add(2^iquo(-k,2)*A(k+1)*add((-1)^v* binomial(k,v)*(v+x+1)^n,v=0..k), k=0..n); expand(%) end: seq(print(seq(SKP(k, n), n=0..9)), k=0..6); # OGF (column) col := proc(n, len) local T; T := A247501_row(n); (-1)^(n+1)*add(T[k+1]/(x-1)^(k+1),k=0..n); seq(coeff(series(%,x,len+1),x,j),j=0..len) end: seq(print(col(n,8)), n=0..6);
nmax = 10; Clear[row]; row[n_] := row[n] = CoefficientList[Exp[n*x]*Sech[x] + O[x]^(nmax+2), x][[1 ;; nmax+1]]*Range[0, nmax]!; rows = Table[row[n], {n, 0, nmax}]; T[n_, k_] := rows[[n+1, k+1]]; Table[T[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)
Comments