cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244491 Number of minimal idempotent generating sets for the singular part P_n \ S_n of the partition monoid P_n.

Original entry on oeis.org

1, 1, 3, 20, 201, 2604, 40915, 754368, 15960945, 381141008, 10139372451, 297356237760, 9530800099513, 331453265976000, 12430323314648499, 500046099516905984, 21478615942550889825, 981110493372418629888, 47489191763845877910595
Offset: 0

Views

Author

N. J. A. Sloane, Jul 05 2014

Keywords

Programs

  • Maple
    A038205 := proc(n)
        option remember ;
        if n = 0 then
            1;
        elif n <=2 then
            0 ;
        else
            (n-1)*procname(n-1)+(n-1)*(n-2)*procname(n-3) ;
        end if;
    end proc:
    A244490 := proc(n,k)
        add((-1)^i*binomial(k,2*i)*doublefactorial(2*i-1)*n^(k-2*i),i=0..floor(k/2)) ;
    end proc:
    A244491 := proc(n)
        add(binomial(n,k)*A038205(k)*A244490(n,n-k),k=0..n) ;
    end proc:
    seq(A244491(n),n=0..30) ; # R. J. Mathar, Aug 26 2014
  • Mathematica
    a05[n_] := SeriesCoefficient[Exp[-x - x^2/2]/(1 - x), {x, 0, n}]*n!;
    a90[n_, k_] := Sum[(-1)^i*Binomial[k, 2i]*(2i-1)!!*n^(k-2*i), {i, 0, k/2}];
    a[n_] := Sum[Binomial[n, k]*a05[k]*a90[n, n - k], {k, 0, n}];
    Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Dec 01 2017, after R. J. Mathar *)

Formula

An explicit formula is given in Th. 7.13 of East-Gray.

A247498 Generalized Euler numbers: Square array read by descending antidiagonals, T(n, k) = k!*[x^k] exp(n*x)*sech(x), n>=0, k>=0.

Original entry on oeis.org

1, 0, 1, -1, 1, 1, 0, 0, 2, 1, 5, -2, 3, 3, 1, 0, 0, 2, 8, 4, 1, -61, 16, -3, 18, 15, 5, 1, 0, 0, 2, 32, 52, 24, 6, 1, 1385, -272, 63, 48, 165, 110, 35, 7, 1, 0, 0, 2, 128, 484, 480, 198, 48, 8, 1, -50521, 7936, -1383, 528, 1395, 2000, 1085, 322, 63, 9, 1
Offset: 0

Views

Author

Peter Luschny, Dec 14 2014

Keywords

Comments

This two-dimensional array of numbers can be seen as a generalization of the Euler secant and Euler tangent numbers (which are in their compressed and signless form A000364 resp. A000182 or interleaved in A000111). The cases n=0 and n=1 reduce to their expanded and signed forms A122045 and A155585. Moreover the columns are the values of the Swiss-Knife polynomials A153641 evaluated at the nonnegative integers.
Subsequences [3,3,1], [8,4,1], [15,5,1], [24,6,1], [35,7,1], [48,8,1], [63,9,1] found in rows of this entry, as a triangular array, are present in the antidiagonals of Table 5 of the East and Gray reference (A244490), and some subsequences in the rows of Table 5 are found in the antidiagonals of this entry, including [3,2,1] and [1,1]. Equivalently, the first four columns of Table 5 are embedded in this entry viewed as a square array on the table page. An explicit formula with combinatorial interpretations for these numbers is provided in the reference, and others are known for the corresponding columns for the modified Hermite polynomials of A244490. - Tom Copeland, Oct 04 2016

Examples

			Square array starts:
  [n\k][0][1] [2]  [3]   [4]   [5]    [6]     [7]     [8]
  [0]   1, 0, -1,   0,    5,    0,   -61,      0,   1385, ... A122045
  [1]   1, 1,  0,  -2,    0,   16,     0,   -272,      0, ... A155585
  [2]   1, 2,  3,   2,   -3,    2,    63,      2,  -1383, ... A119880
  [3]   1, 3,  8,  18,   32,   48,   128,    528,    512, ... A119881
  [4]   1, 4, 15,  52,  165,  484,  1395,   4372,  14505, ...
  [5]   1, 5, 24, 110,  480, 2000,  8064,  32240, 130560, ... A225116
  [6]   1, 6, 35, 198, 1085, 5766, 29855, 151878, 766745, ...
  A000012, A001477, A067998, A121670, ...
Triangular array starts:
                1,
              0,  1,
           -1,  1,  1,
          0,  0,  2,  1,
        5, -2,  3,  3,  1,
      0,  0,  2,  8,  4,  1,
  -61, 16, -3, 18, 15,  5,  1.
		

Crossrefs

Programs

  • Maple
    # EGF (row)
    egf := n -> exp(n*x)*sech(x):
    seq(print(seq(k!*coeff(series(egf(n),x,k+2),x,k),k=0..8)), n=0..6);
    # Swiss-Knife polynomial (column)
    SKP := proc(n, x) local v, k, A; A := k -> `if`(k mod 4 = 0,0,(-1)^iquo(k,4)); add(2^iquo(-k,2)*A(k+1)*add((-1)^v* binomial(k,v)*(v+x+1)^n,v=0..k), k=0..n); expand(%) end:
    seq(print(seq(SKP(k, n), n=0..9)), k=0..6);
    # OGF (column)
    col := proc(n, len) local T; T := A247501_row(n);
    (-1)^(n+1)*add(T[k+1]/(x-1)^(k+1),k=0..n);
    seq(coeff(series(%,x,len+1),x,j),j=0..len) end:
    seq(print(col(n,8)), n=0..6);
  • Mathematica
    nmax = 10; Clear[row]; row[n_] := row[n] = CoefficientList[Exp[n*x]*Sech[x] + O[x]^(nmax+2), x][[1 ;; nmax+1]]*Range[0, nmax]!;
    rows = Table[row[n], {n, 0, nmax}];
    T[n_, k_] := rows[[n+1, k+1]];
    Table[T[n-k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 03 2017 *)

Formula

G.f. for column k: the k-th column consists of the values of the k-th Swiss-Knife polynomial skp_{k}(x) evaluated at x = 0,1,2,...
O.g.f. for column k: Sum_{j=0..k} (-1)^(k+1)*A247501(k,j)/(x-1)^(j+1).

A276999 Triangle read by rows, T(n,k) = n^k - 2^(k/2)*KummerU(-k/2,1/2,n^2/2) for 0<=k<=n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 1, 9, 0, 0, 1, 12, 93, 0, 0, 1, 15, 147, 1175, 0, 0, 1, 18, 213, 2070, 17835, 0, 0, 1, 21, 291, 3325, 33825, 317667, 0, 0, 1, 24, 381, 5000, 58575, 635208, 6506647, 0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397
Offset: 0

Views

Author

Peter Luschny, Oct 06 2016

Keywords

Comments

East and Gray (p. 24) give a combinatorial interpretation of the numbers: A function f: Y -> X with Y <= X (<= inclusion) has a 2-cycle if there exists x, y in Y with x != y, f(x) = y and f(y) = x. Then T(n,k) = card({f: [k] -> [n]: f has 2-cycles}).

Examples

			Triangle begins:
0;
0, 0;
0, 0, 1;
0, 0, 1,  9;
0, 0, 1, 12,  93;
0, 0, 1, 15, 147, 1175;
0, 0, 1, 18, 213, 2070, 17835;
0, 0, 1, 21, 291, 3325, 33825,  317667;
0, 0, 1, 24, 381, 5000, 58575,  635208,  6506647;
0, 0, 1, 27, 483, 7155, 94785, 1164429, 13536453, 150776397;
.
For instance T(3,3) = 9 because there are 27 functions [3]->[3], 18 of which have
no 2-cycles. The 9 functions which have 2-cycles are (represented as [f(1), f(2),
f(3)]): [1, 3, 2], [2, 1, 1], [2, 1, 2], [2, 1, 3], [2, 3, 2], [3, 1, 1],
[3, 2, 1], [3, 3, 1], [3, 3, 2].
		

Crossrefs

T(n,k) = n^k - A244490(n,k), T(n,3) = A008585(n) for n>=3, T(n,4) = A224334(n-1) for n>=4, T(n,5) = A127694(n-3) for n>=5.

Programs

  • Maple
    T := (n,k) -> n^k - 2^(k/2)*KummerU(-k/2, 1/2, n^2/2):
    seq(seq(simplify(T(n,k)), k=0..n), n=0..9);
  • Mathematica
    Table[Simplify[n^k - 2^(-k/2) HermiteH[k, n/Sqrt[2]]], {n, 0, 10}, {k, 0, n}] // Flatten
  • Sage
    def T(n, k):
        @cached_function
        def h(n, x):
            if n == 0: return 1
            if n == 1: return 2*x
            return 2*(x*h(n-1,x)-(n-1)*h(n-2,x))
        return n^k - h(k, n/sqrt(2))/2^(k/2)
    for n in range(10):
        print([T(n,k) for k in (0..n)])

Formula

T(n,k) = n^k - 2^(-k/2)*HermiteH(k, n/sqrt(2)).
T(n,k) = n^k - Sum_{i=0..k/2} k!/((-2)^i*i!*(k-2*i)!)*n^(k-2*i).
T(n,k) = n^k*(1-hypergeom([-k/2, (1-k)/2], [], -2/n^2)) for n>=1.
T(n,k) ~ n^k*(((k-1)*k)/(2*n^2)-(k*(k^3-6*k^2+11*k-6))/(8*n^4)+(k*(k^5-15*k^4 +85*k^3-225*k^2+274*k-120))/(48*n^6)+O((1/n)^7)).
Showing 1-3 of 3 results.