A121671 Real part of (1 + n*i)^5.
1, -4, 41, 316, 1121, 2876, 6121, 11516, 19841, 31996, 49001, 71996, 102241, 141116, 190121, 250876, 325121, 414716, 521641, 647996, 796001, 967996, 1166441, 1393916, 1653121, 1946876, 2278121, 2649916, 3065441, 3527996, 4041001, 4607996, 5232641, 5918716
Offset: 0
Examples
a(4) = 1121 since (1 + 4i)^5 = (1121 + 404i) where 404 = A121672(4).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Crossrefs
Cf. A121672.
Programs
-
Mathematica
Table[Re[(1 + n*I)^5], {n, 0, 35}] (* T. D. Noe, Mar 01 2012 *) LinearRecurrence[{5,-10,10,-5,1},{1,-4,41,316,1121},40] (* Harvey P. Dale, Apr 21 2019 *)
-
PARI
a(n) = real((1 + n*I)^5); \\ Michel Marcus, Dec 19 2020
Formula
G.f.: (1-9*x+71*x^2+61*x^3-4*x^4)/(1-x)^5. - Bruno Berselli, Mar 01 2012
a(n) = 5*n^4-10*n^2+1. - Bruno Berselli, Mar 01 2012
a(n) = (1+n^2)^(5/2)*cos(5*arctan(n)). - Gerry Martens, Apr 06 2024
Extensions
Corrected and extended by T. D. Noe, Mar 01 2012
Comments