cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A195043 Concentric 11-gonal numbers.

Original entry on oeis.org

0, 1, 11, 23, 44, 67, 99, 133, 176, 221, 275, 331, 396, 463, 539, 617, 704, 793, 891, 991, 1100, 1211, 1331, 1453, 1584, 1717, 1859, 2003, 2156, 2311, 2475, 2641, 2816, 2993, 3179, 3367, 3564, 3763, 3971, 4181, 4400, 4621, 4851, 5083, 5324, 5567
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric hendecagonal numbers. A033584 and A069173 interleaved.
Partial sums of A175885. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

  • Haskell
    a195043 n = a195043_list !! n
    a195043_list = scanl (+) 0 a175885_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Magma
    [11*n^2/4+7*((-1)^n-1)/8: n in [0..50]]; // Vincenzo Librandi, Sep 30 2011
    
  • Mathematica
    LinearRecurrence[{2,0,-2,1},{0,1,11,23},50] (* Harvey P. Dale, May 20 2019 *)
  • PARI
    Vec(-x*(x^2+9*x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Sep 15 2013

Formula

a(n) = 11*n^2/4 + 7*((-1)^n - 1)/8.
a(n) = -a(n-1) + A069125(n). - Vincenzo Librandi, Sep 30 2011
From Colin Barker, Sep 15 2013: (Start)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
G.f.: -x*(x^2+9*x+1) / ((x-1)^3*(x+1)). (End)
Sum_{n>=1} 1/a(n) = Pi^2/66 + tan(sqrt(7/11)*Pi/2)*Pi/sqrt(77). - Amiram Eldar, Jan 16 2023

A195318 Centered 44-gonal numbers.

Original entry on oeis.org

1, 45, 133, 265, 441, 661, 925, 1233, 1585, 1981, 2421, 2905, 3433, 4005, 4621, 5281, 5985, 6733, 7525, 8361, 9241, 10165, 11133, 12145, 13201, 14301, 15445, 16633, 17865, 19141, 20461, 21825, 23233, 24685, 26181, 27721, 29305, 30933, 32605, 34321, 36081, 37885, 39733
Offset: 1

Views

Author

Omar E. Pol, Sep 16 2011

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 45, ..., in the square spiral whose vertices are the generalized tridecagonal numbers A195313. Semi-axis opposite to A195323 in the same spiral.

Crossrefs

Programs

Formula

a(n) = 22*n^2 - 22*n + 1.
Sum_{n>=1} 1/a(n) = Pi*tan(3*Pi/(2*sqrt(11)))/(6*sqrt(11)). - Amiram Eldar, Feb 11 2022
G.f.: -x*(1+42*x+x^2)/(x-1)^3. - R. J. Mathar, May 07 2024
From Elmo R. Oliveira, Nov 15 2024: (Start)
E.g.f.: exp(x)*(22*x^2 + 1) - 1.
a(n) = 2*A069173(n) - 1.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

A010012 a(0) = 1, a(n) = 22*n^2 + 2 for n>0.

Original entry on oeis.org

1, 24, 90, 200, 354, 552, 794, 1080, 1410, 1784, 2202, 2664, 3170, 3720, 4314, 4952, 5634, 6360, 7130, 7944, 8802, 9704, 10650, 11640, 12674, 13752, 14874, 16040, 17250, 18504, 19802, 21144, 22530, 23960, 25434, 26952, 28514, 30120, 31770, 33464, 35202, 36984
Offset: 0

Views

Author

Keywords

Comments

From Bruno Berselli, Feb 06 2012: (Start)
First trisection of A008259.
Apart from the first term, numbers of the form (r^2+2*s^2)*n^2+2 = (r*n)^2+(s*n-1)^2+(s*n+1)^2: in this case is r=2, s=3. After 1, all terms are in A000408. (End)

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [22*n^2+2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 22 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1},LinearRecurrence[{3,-3,1},{24,90,200},50]] (* Harvey P. Dale, Jul 20 2013 *)
    CoefficientList[Series[(1 + x) (1 + 20 x + x^2)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

G.f.: (1+x)*(1+20*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*22+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4 + sqrt(11)/44*Pi*coth( Pi/sqrt(11)) = 1.0706480516966... - R. J. Mathar, May 07 2024
a(n) = A069173(n)+A069173(n+1). - R. J. Mathar, May 07 2024

A195902 Palindromic centered 22-gonal numbers.

Original entry on oeis.org

1, 189949981, 3031430341303, 1139781083801879311, 1414082803082804141, 1444271276721724441, 1966548318138456691, 3457863858583687543, 3516331046401336153, 193361787181787163391, 3876643622232322263466783
Offset: 1

Views

Author

Kausthub Gudipati, Sep 25 2011

Keywords

Comments

a(12) > 10^26. - Donovan Johnson, Sep 27 2011

Formula

a(n) = A069173(A196494(n)).

Extensions

a(8)-a(10) from Giovanni Resta, Sep 26 2011
a(11) from Donovan Johnson, Sep 27 2011

A196494 Indices of palindromic centered 22-gonal numbers. (A195902).

Original entry on oeis.org

1, 4156, 524962, 321895111, 358542860, 362349816, 422820435, 560670367, 565390537, 4192653610, 593651537079
Offset: 1

Views

Author

Kausthub Gudipati, Oct 03 2011

Keywords

Crossrefs

Formula

{n : A069173(n) in A195902}.

A276262 Centered 22-gonal primes.

Original entry on oeis.org

23, 67, 331, 463, 617, 991, 1453, 2003, 2311, 4621, 6073, 7151, 7723, 8317, 8933, 11617, 12343, 14653, 15467, 18041, 19867, 25873, 26951, 28051, 29173, 37643, 41603, 42967, 51613, 61051, 62701, 64373, 66067, 67783, 73063, 78541, 94117, 102433, 117833, 120121, 131891, 136753
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 26 2016

Keywords

Comments

Primes of the form 11*k^2 + 11*k + 1.
Numbers k such that 11*k^2 + 11*k + 1 is prime: 1, 2, 5, 6, 7, 9, 11, 13, 14, 20, 23, 25, 26, 27, 28, 32, 33, 36, 37, 40, 42, 48, 49, 50, 51, ...

Crossrefs

Cf. centered k-gonal primes listed in A276261.

Programs

  • Magma
    [k: n in [1..120] | IsPrime(k) where k is 11*n^2-11*n+1]; // Vincenzo Librandi, Aug 29 2016
  • Maple
    select(isprime, [seq(11*k^2+11*k+1, k=1..1000)]);
  • Mathematica
    Intersection[Table[11 k^2 + 11 k + 1, {k, 0, 1000}], Prime[Range[13000]]]
    Select[Table[11n^2+11n+1,{n,150}],PrimeQ] (* Harvey P. Dale, Nov 22 2023 *)
  • PARI
    lista(nn) = for(n=1, nn, if(isprime(p=11*n^2 + 11*n + 1), print1(p, ", "))); \\ Altug Alkan, Aug 26 2016
    
Showing 1-7 of 7 results.