cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033571 a(n) = (2*n + 1)*(5*n + 1).

Original entry on oeis.org

1, 18, 55, 112, 189, 286, 403, 540, 697, 874, 1071, 1288, 1525, 1782, 2059, 2356, 2673, 3010, 3367, 3744, 4141, 4558, 4995, 5452, 5929, 6426, 6943, 7480, 8037, 8614, 9211, 9828, 10465, 11122, 11799, 12496, 13213, 13950, 14707, 15484, 16281, 17098, 17935, 18792, 19669, 20566, 21483
Offset: 0

Views

Author

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. This is one of the diagonals in the spiral. - Omar E. Pol, Sep 10 2011
Also sequence found by reading the line from 1, in the direction 1, 18, ..., in the square spiral whose edges have length A195013 and whose vertices are the numbers A195014. This is a line perpendicular to the main axis A195015 in the same spiral. - Omar E. Pol, Oct 14 2011

Crossrefs

Programs

Formula

a(n) = A153126(2*n) = A000566(2*n+1). - Reinhard Zumkeller, Dec 20 2008
From Reinhard Zumkeller, Mar 13 2009: (Start)
a(n) = A008596(n) + A158186(n), for n > 0.
a(n) = A010010(n) - A158186(n). (End)
a(n) = a(n-1) + 20*n - 3 (with a(0)=1). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Oct 12 2019: (Start)
G.f.: (1 + 15*x + 4*x^2)/(1-x)^3.
E.g.f.: (1 + 17*x + 10*x^2)*exp(x). (End)
a(n) = A003154(n+1) + A007742(n). - Leo Tavares, Mar 27 2022
Sum_{n>=0} 1/a(n) = sqrt(1+2/sqrt(5))*Pi/6 + sqrt(5)*log(phi)/6 + 5*log(5)/12 - 2*log(2)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Aug 23 2022

Extensions

Terms a(36) onward added by G. C. Greubel, Oct 12 2019

A158187 a(n) = 10*n^2 + 1.

Original entry on oeis.org

1, 11, 41, 91, 161, 251, 361, 491, 641, 811, 1001, 1211, 1441, 1691, 1961, 2251, 2561, 2891, 3241, 3611, 4001, 4411, 4841, 5291, 5761, 6251, 6761, 7291, 7841, 8411, 9001, 9611, 10241, 10891, 11561, 12251, 12961, 13691, 14441, 15211, 16001, 16811, 17641
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 13 2009

Keywords

Comments

Sequence found by reading the segment (1, 11) together with the line from 11, in the direction 11, 41, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011
The identity (10n^2 + 1)^2 - (25n^2 + 5)*(2n)^2 = 1 can be written as a(n)^2 - A158445(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Jan 03 2012

Crossrefs

Cf. A158445, A005843. - Vincenzo Librandi, Mar 19 2009

Programs

Formula

a(n) = A033583(n) + 1.
For n > 0: a(n) = A010010(n)/2.
From Vincenzo Librandi, Jan 03 2012: (Start)
G.f: x*(11 + 8*x + x^2)/(1-x)^3.
a(n) = a(-n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Jul 15 2020: (Start)
Sum_{n>=0} 1/a(n) = (1 + (Pi/sqrt(10))*coth(Pi/sqrt(10)))/2.
Sum_{n>=0} (-1)^n/a(n) = (1 + (Pi/sqrt(10))*csch(Pi/sqrt(10)))/2. (End)
From Amiram Eldar, Feb 05 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = sqrt(2)*csch(Pi/sqrt(10))*sinh(Pi/sqrt(5)).
Product_{n>=1} (1 - 1/a(n)) = (Pi/sqrt(10))*csch(Pi/sqrt(10)). (End)
E.g.f.: exp(x)*(1 + 10*x + 10*x^2). - Stefano Spezia, Feb 05 2021

A158186 a(n) = 10*n^2 - 7*n + 1.

Original entry on oeis.org

1, 4, 27, 70, 133, 216, 319, 442, 585, 748, 931, 1134, 1357, 1600, 1863, 2146, 2449, 2772, 3115, 3478, 3861, 4264, 4687, 5130, 5593, 6076, 6579, 7102, 7645, 8208, 8791, 9394, 10017, 10660, 11323, 12006, 12709, 13432, 14175, 14938, 15721, 16524, 17347
Offset: 0

Views

Author

Reinhard Zumkeller, Mar 13 2009

Keywords

Comments

Sequence found by reading the segment (1, 4) together with the line (one of the diagonal axes) from 4, in the direction 4, 27, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

  • Mathematica
    Table[10n^2-7n+1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{1,4,27},50] (* Harvey P. Dale, Apr 06 2020 *)
  • PARI
    a(n)=10*n^2-7*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

a(n) = (2*n-1)*(5*n-1).
a(n) = A033571(n) - A008596(n) = A010010(n) - A033571(n).
G.f.: (1+x+18*x^2)/(1-x)^3. - Jaume Oliver Lafont, Mar 27 2009
a(n) = a(n-1) + 20*n - 17 (with a(0)=1). - Vincenzo Librandi, Dec 03 2010
Sum_{n>=0} 1/a(n) = 1 + (2*sqrt(1+2/sqrt(5))*Pi - 2*sqrt(5)*log(phi) - 5*log(5) + 8*log(2))/12, where phi is the golden ratio (A001622). - Amiram Eldar, Sep 22 2022

Extensions

Typo in definition corrected by Reinhard Zumkeller, Dec 03 2009
Showing 1-3 of 3 results.