cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A033583 a(n) = 10*n^2.

Original entry on oeis.org

0, 10, 40, 90, 160, 250, 360, 490, 640, 810, 1000, 1210, 1440, 1690, 1960, 2250, 2560, 2890, 3240, 3610, 4000, 4410, 4840, 5290, 5760, 6250, 6760, 7290, 7840, 8410, 9000, 9610, 10240, 10890, 11560, 12250, 12960, 13690, 14440, 15210, 16000, 16810
Offset: 0

Views

Author

Keywords

Comments

Number of edges of a complete 5-partite graph of order 5n, K_n,n,n,n,n. - Roberto E. Martinez II, Oct 18 2001
10 times the squares. - Omar E. Pol, Dec 13 2008
Sequence found by reading the line from 0, in the direction 0, 10, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. - Omar E. Pol, Sep 10 2011

Crossrefs

Programs

Formula

a(n) = 10*A000290(n) = 5*A001105(n) = 2*A033429(n). - Omar E. Pol, Dec 13 2008
a(n) = A158187(n) - 1. - Reinhard Zumkeller, Mar 13 2009
a(n) = 20*n + a(n-1) - 10 for n>0, a(0)=0. - Vincenzo Librandi, Aug 05 2010
a(n) = t(5*n) - 5*t(n), where t(i) = i*(i+k)/2 for any k. Special case (k=1): a(n) = A000217(5*n) - 5*A000217(n). - Bruno Berselli, Aug 31 2017
From Amiram Eldar, Feb 03 2021: (Start)
Sum_{n>=1} 1/a(n) = Pi^2/60.
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/120.
Product_{n>=1} (1 + 1/a(n)) = sqrt(10)*sinh(Pi/sqrt(10))/Pi.
Product_{n>=1} (1 - 1/a(n)) = sqrt(10)*sin(Pi/sqrt(10))/Pi. (End)
From Stefano Spezia, Jul 06 2021: (Start)
O.g.f.: 10*x*(1 + x)/(1 - x)^3.
E.g.f.: 10*exp(x)*x*(1 + x). (End)

A010010 a(0) = 1, a(n) = 20*n^2 + 2 for n>0.

Original entry on oeis.org

1, 22, 82, 182, 322, 502, 722, 982, 1282, 1622, 2002, 2422, 2882, 3382, 3922, 4502, 5122, 5782, 6482, 7222, 8002, 8822, 9682, 10582, 11522, 12502, 13522, 14582, 15682, 16822, 18002, 19222, 20482, 21782, 23122, 24502, 25922, 27382, 28882, 30422, 32002, 33622
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A206399.

Programs

  • Magma
    [1] cat [20*n^2 + 2: n in [1..50]]; // Vincenzo Librandi, Aug 03 2015
  • Mathematica
    Join[{1}, 20 Range[41]^2 + 2] (* Bruno Berselli, Feb 06 2012 *)
    Join[{1}, LinearRecurrence[{3, -3, 1}, {22, 82, 182}, 50]] (* Vincenzo Librandi, Aug 03 2015 *)

Formula

a(n) = A033571(n)+A158186(n) = A158187(n)*2 for n>0. - Reinhard Zumkeller, Mar 13 2009
G.f.: (1+x)*(1+18*x+x^2)/(1-x)^3. - Bruno Berselli, Feb 06 2012
E.g.f.: (x*(x+1)*20+2)*e^x-1. - Gopinath A. R., Feb 14 2012
Sum_{n>=0} 1/a(n) = 3/4+sqrt(10)/40*Pi*coth(Pi/sqrt(10)) = 1.0772981051444036327... - R. J. Mathar, May 07 2024
a(n) = A069133(n)+A069133(n+1). - R. J. Mathar, May 07 2024

A158602 a(n) = 40*n^2 + 1.

Original entry on oeis.org

1, 41, 161, 361, 641, 1001, 1441, 1961, 2561, 3241, 4001, 4841, 5761, 6761, 7841, 9001, 10241, 11561, 12961, 14441, 16001, 17641, 19361, 21161, 23041, 25001, 27041, 29161, 31361, 33641, 36001, 38441, 40961, 43561, 46241, 49001, 51841, 54761, 57761, 60841, 64001
Offset: 0

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (40*n^2 + 1)^2 - (400*n^2 + 20)*(2*n)^2 = 1 can be written as a(n)^2 - A158601(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[1,41,161]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
    
  • Maple
    A158602:=n->40*n^2; seq(A158602(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
  • Mathematica
    40*Range[0,40]^2+1 (* or *) LinearRecurrence[{3,-3,1},{1,41,161},40] (* Harvey P. Dale, Jul 25 2011 *)
    Table[40n^2+1, {n,0,100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
  • PARI
    for(n=0, 40, print1(40*n^2 + 1", ")); \\ Vincenzo Librandi, Feb 16 2012

Formula

G.f.: -(1 + 38*x + 41*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) + 1)/2.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) + 1)/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(1 + 40*x + 40*x^2).
a(n) = A158187(2*n). (End)

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

A158445 a(n) = 25*n^2 + 5.

Original entry on oeis.org

30, 105, 230, 405, 630, 905, 1230, 1605, 2030, 2505, 3030, 3605, 4230, 4905, 5630, 6405, 7230, 8105, 9030, 10005, 11030, 12105, 13230, 14405, 15630, 16905, 18230, 19605, 21030, 22505, 24030, 25605, 27230, 28905, 30630, 32405, 34230, 36105, 38030, 40005, 42030
Offset: 1

Views

Author

Vincenzo Librandi, Mar 19 2009

Keywords

Comments

The identity (10*n^2 + 1)^2 - (25*n^2 + 5)*(2*n)^2 = 1 can be written as A158187(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[30, 105, 230]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]];
    
  • Mathematica
    Table[25n^2+5,{n,50}]
    LinearRecurrence[{3,-3,1},{30,105,230},50] (* Harvey P. Dale, Mar 21 2025 *)
  • PARI
    a(n) = 25*n^2 + 5.

Formula

a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f: 5*x*(6+3*x+x^2)/(1-x)^3.
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/sqrt(5))*Pi/sqrt(5) - 1)/10.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/sqrt(5))*Pi/sqrt(5))/10. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: 5*(exp(x)*(5*x^2 + 5*x + 1) - 1).
a(n) = 5*A212656(n). (End)

A158492 a(n) = 100*n^2 + 10.

Original entry on oeis.org

10, 110, 410, 910, 1610, 2510, 3610, 4910, 6410, 8110, 10010, 12110, 14410, 16910, 19610, 22510, 25610, 28910, 32410, 36110, 40010, 44110, 48410, 52910, 57610, 62510, 67610, 72910, 78410, 84110, 90010, 96110, 102410, 108910, 115610, 122510, 129610, 136910, 144410
Offset: 0

Views

Author

Vincenzo Librandi, Mar 21 2009

Keywords

Comments

The identity (20*n^2 + 1)^2 - (100*n^2 + 10)*(2*n)^2 = 1 can be written as A158493(n)^2 - a(n)*A005843(n)^2 = 1. - Vincenzo Librandi, Feb 21 2012

Crossrefs

Programs

  • Magma
    I:=[10, 110, 410]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 21 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {10, 110, 410}, 50] (* Vincenzo Librandi, Feb 21 2012 *)
    100Range[0,40]^2+10 (* Harvey P. Dale, Dec 30 2019 *)
  • PARI
    for(n=0, 40, print1(100*n^2 + 10", ")); \\ Vincenzo Librandi, Feb 21 2012

Formula

From Vincenzo Librandi, Feb 21 2012: (Start)
G.f.: -(10 + 80*x + 110*x^2)/(x-1)^3;
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 05 2023: (Start)
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/sqrt(10))*Pi/sqrt(10))/20.
Sum_{n>=0} (-1)^n/a(n) = (1 + cosech(Pi/sqrt(10))*Pi/sqrt(10))/20. (End)
From Elmo R. Oliveira, Jan 17 2025: (Start)
E.g.f.: 10*exp(x)*(1 + 10*x + 10*x^2).
a(n) = 10*A158187(n). (End)

Extensions

Edited by N. J. A. Sloane, Oct 12 2009

A272130 a(n) = 16*n^3 + 10*n^2 + 4*n + 1.

Original entry on oeis.org

1, 31, 177, 535, 1201, 2271, 3841, 6007, 8865, 12511, 17041, 22551, 29137, 36895, 45921, 56311, 68161, 81567, 96625, 113431, 132081, 152671, 175297, 200055, 227041, 256351, 288081, 322327, 359185, 398751, 441121, 486391, 534657, 586015, 640561, 698391
Offset: 0

Views

Author

Vincenzo Librandi, Apr 21 2016

Keywords

Crossrefs

Programs

  • Magma
    [16*n^3+10*n^2+4*n+1: n in [0..50]];
    
  • Maple
    A272130:=n->16*n^3+10*n^2+4*n+1: seq(A272130(n), n=0..50); # Wesley Ivan Hurt, Apr 22 2016
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{1,31,177,535},50]
    CoefficientList[Series[(1 + 27*x + 59*x^2 + 9*x^3)/(1 - x)^4, {x, 0, 30}], x] (* Wesley Ivan Hurt, Apr 22 2016 *)
  • PARI
    vector(100, n, n--; 16*n^3+10*n^2+4*n+1) \\ Altug Alkan, Apr 22 2016

Formula

O.g.f.: (1+27*x+59*x^2+9*x^3)/(1-x)^4.
E.g.f.: (1+30*x+58*x^2+16*x^3)*exp(x).
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>3.
a(n) = A158187(n) + A144965(n).
Showing 1-6 of 6 results.