cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A158601 a(n) = 400*n^2 + 20.

Original entry on oeis.org

20, 420, 1620, 3620, 6420, 10020, 14420, 19620, 25620, 32420, 40020, 48420, 57620, 67620, 78420, 90020, 102420, 115620, 129620, 144420, 160020, 176420, 193620, 211620, 230420, 250020, 270420, 291620, 313620, 336420, 360020, 384420, 409620, 435620, 462420, 490020
Offset: 0

Views

Author

Vincenzo Librandi, Mar 22 2009

Keywords

Comments

The identity (40*n^2 + 1)^2 - (400*n^2 + 20)*(2*n)^2 = 1 can be written as A158602(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[20, 420, 1620]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 16 2012
    
  • Mathematica
    400 Range[0,40]^2+20  (* Harvey P. Dale, Feb 05 2011 *)
    LinearRecurrence[{3, -3, 1}, {20, 420, 1620}, 50] (* Vincenzo Librandi, Feb 16 2012 *)
  • PARI
    for(n=0, 40, print1(400*n^2 + 20", ")); \\ Vincenzo Librandi, Feb 16 2012

Formula

G.f.: -20*(1 + 18*x + 21*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
From Amiram Eldar, Mar 16 2023: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) + 1)/40.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi/(2*sqrt(5)))*Pi/(2*sqrt(5)) + 1)/40. (End)
From Elmo R. Oliveira, Jan 15 2025: (Start)
E.g.f.: 20*exp(x)*(1 + 20*x + 20*x^2).
a(n) = 20*A158493(n). (End)

Extensions

Comment rewritten, formula replaced by R. J. Mathar, Oct 28 2009

A158775 a(n) = 1600*n^2 + 40.

Original entry on oeis.org

1640, 6440, 14440, 25640, 40040, 57640, 78440, 102440, 129640, 160040, 193640, 230440, 270440, 313640, 360040, 409640, 462440, 518440, 577640, 640040, 705640, 774440, 846440, 921640, 1000040, 1081640, 1166440, 1254440, 1345640, 1440040, 1537640, 1638440, 1742440
Offset: 1

Views

Author

Vincenzo Librandi, Mar 26 2009

Keywords

Comments

The identity (80*n^2 + 1)^2 - (1600*n^2 + 40)*(2*n)^2 = 1 can be written as A158776(n)^2 - a(n)*A005843(n)^2 = 1.

Crossrefs

Programs

  • Magma
    I:=[1640, 6440, 14440]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Feb 20 2012
    
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {1640, 6440, 14440}, 50] (* Vincenzo Librandi, Feb 20 2012 *)
    1600*Range[30]^2+ 40 (* Harvey P. Dale, Jun 02 2020 *)
  • PARI
    for(n=1, 40, print1(1600*n^2 + 40", ")); \\ Vincenzo Librandi, Feb 20 2012

Formula

From R. J. Mathar, Jul 26 2009: (Start)
G.f.: -40*x*(41 + 38*x + x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 24 2023: (Start)
Sum_{n>=1} 1/a(n) = (coth(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)) - 1)/80.
Sum_{n>=1} (-1)^(n+1)/a(n) = (1 - cosech(Pi/(2*sqrt(10)))*Pi/(2*sqrt(10)))/80. (End)
From Elmo R. Oliveira, Jan 26 2025: (Start)
E.g.f.: 40*(exp(x)*(40*x^2 + 40*x + 1) - 1).
a(n) = 40*A158602(n). (End)

Extensions

Edited by R. J. Mathar, Jul 26 2009
Showing 1-2 of 2 results.