A124110
Primes of the form A124080 (10 times triangular numbers) +- 1.
Original entry on oeis.org
11, 29, 31, 59, 61, 101, 149, 151, 211, 281, 359, 449, 659, 661, 911, 1049, 1051, 1201, 1361, 1531, 1709, 1901, 2099, 2309, 2311, 2531, 2999, 3001, 3251, 3511, 3779, 4349, 4649, 4651, 5279, 5281, 6299, 6301, 6659, 6661, 7411, 8609, 9029, 9461, 9901, 11279
Offset: 1
a(1) = A124080(1)+1 = (10*T(1)) - 1 = 10*(1*(1+1)/2) + 1 = 10+1 = 11 is prime.
a(2) = A124080(2)-1 = (10*T(2))-1 = 10*(2*(2+1)/2) - 1 = 30-1 = 29 is prime.
a(3) = A124080(2)+1 = (10*T(2))+1 = 10*(2*(2+1)/2) + 1 = 30+1 = 31 is prime.
-
s = {}; Do[t = 5n(n + 1); If[PrimeQ[t - 1], AppendTo[s, t - 1]]; If[PrimeQ[t + 1], AppendTo[s, t + 1]], {n, 47}]; s (* Robert G. Wilson v *)
A002378
Oblong (or promic, pronic, or heteromecic) numbers: a(n) = n*(n+1).
Original entry on oeis.org
0, 2, 6, 12, 20, 30, 42, 56, 72, 90, 110, 132, 156, 182, 210, 240, 272, 306, 342, 380, 420, 462, 506, 552, 600, 650, 702, 756, 812, 870, 930, 992, 1056, 1122, 1190, 1260, 1332, 1406, 1482, 1560, 1640, 1722, 1806, 1892, 1980, 2070, 2162, 2256, 2352, 2450, 2550
Offset: 0
a(3) = 12, since 2(3)+2 = 8 has 4 partitions with exactly two parts: (7,1), (6,2), (5,3), (4,4). Taking the positive differences of the parts in each partition and adding, we get: 6 + 4 + 2 + 0 = 12. - _Wesley Ivan Hurt_, Jun 02 2013
G.f. = 2*x + 6*x^2 + 12*x^3 + 20*x^4 + 30*x^5 + 42*x^6 + 56*x^7 + ... - _Michael Somos_, May 22 2014
From _Miquel Cerda_, Dec 04 2016: (Start)
a(1) = 2, since 45-43 = 2;
a(2) = 6, since 47-45 = 2 and 47-43 = 4, then 2+4 = 6;
a(3) = 12, since 49-47 = 2, 49-45 = 4, and 49-43 = 6, then 2+4+6 = 12. (End)
- W. W. Berman and D. E. Smith, A Brief History of Mathematics, 1910, Open Court, page 67.
- J. H. Conway and R. K. Guy, The Book of Numbers, 1996, p. 34.
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
- L. E. Dickson, History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Chelsea, p. 357, 1952.
- L. E. Dickson, History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, pp. 6, 232-233, 350 and 407, 1952.
- H. Eves, An Introduction to the History of Mathematics, revised, Holt, Rinehart and Winston, 1964, page 72.
- Nicomachus of Gerasa, Introduction to Arithmetic, translation by Martin Luther D'Ooge, Ann Arbor, University of Michigan Press, 1938, p. 254.
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.6 Figurate Numbers, p. 291.
- Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968), pp. 980-981.
- C. S. Ogilvy and J. T. Anderson, Excursions in Number Theory, Oxford University Press, 1966, pp. 61-62.
- Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 54-55.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- F. J. Swetz, From Five Fingers to Infinity, Open Court, 1994, p. 219.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 2-6.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
- R. Bapat, S. J. Kirkland, and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005), 193-209.
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Allan Bickle, Zagreb Indices of Maximal k-degenerate Graphs, Australas. J. Combin. 89 1 (2024) 167-178.
- Alin Bostan, Frédéric Chyzak, and Vincent Pilaud, Refined product formulas for Tamari intervals, arXiv:2303.10986 [math.CO], 2023.
- H. Bottomley, Illustration of initial terms of A000217, A002378.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 410
- P. Cameron, T. Prellberg and D. Stark, Asymptotics for incidence matrix classes, Electron. J. Combin. 13 (2006), #R85, p. 11.
- S. Crowley, Two new zeta constants: fractal string and hypergeometric aspects of the Riemann zeta function, viXra:1202.0066, 2012.
- J. Estes and B. Wei, Sharp bounds of the Zagreb indices of k-trees, J Comb Optim 27 (2014), 271-291.
- Ricardo Gómez Aíza, Trees with flowers: A catalog of integer partition and integer composition trees with their asymptotic analysis, arXiv:2402.16111 [math.CO], 2024. See p. 23.
- I. Gutman and K. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem. 50 (2004), 83-92.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- L. B. W. Jolley, Summation of Series, Dover, 1961.
- Refik Keskin and Olcay Karaatli, Some New Properties of Balancing Numbers and Square Triangular Numbers, Journal of Integer Sequences, Vol. 15 (2012), Article #12.1.4.
- Craig Knecht, Largest pond by area in a square.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See p. 27.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article #18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- Lee Melvin Peralta, Solutions to the Equation [x]x = n, The Mathematics Teacher, Vol. 111, No. 2 (October 2017), pp. 150-154.
- Aleksandar Petojević, A Note about the Pochhammer Symbol, Mathematica Moravica, Vol. 12-1 (2008), 37-42.
- A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- John D. Roth, David A. Garren, and R. Clark Robertson, Integer Carrier Frequency Offset Estimation in OFDM with Zadoff-Chu Sequences, IEEE Int'l Conference on Acoustics, Speech and Signal Processing (ICASSP 2021) 4850-4854.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
- Michelle Rudolph-Lilith, On the Product Representation of Number Sequences, with Application to the Fibonacci Family, arXiv preprint arXiv:1508.07894 [math.NT], 2015.
- Amelia Carolina Sparavigna, Groupoids of OEIS A002378 and A016754 Numbers (oblong and odd square numbers), Politecnico di Torino (Italy, 2019).
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- J. Striker and N. Williams, Promotion and Rowmotion , arXiv preprint arXiv:1108.1172 [math.CO], 2011-2012.
- D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Square illustration
- R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
- G. Villemin's Almanach of Numbers, Nombres Proniques.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, Pronic Number.
- Eric Weisstein's World of Mathematics, Leibniz Harmonic Triangle.
- Eric Weisstein's World of Mathematics, Wheel Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Wikipedia, Pronic number.
- Wolfram Research, Hypergeometric Function 3F2, The Wolfram Functions site.
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Partial sums of
A005843 (even numbers). Twice triangular numbers (
A000217).
Cf.
A035106,
A087811,
A119462,
A127235,
A049598,
A124080,
A033996,
A028896,
A046092,
A000217,
A005563,
A046092,
A001082,
A059300,
A059297,
A059298,
A166373,
A002943 (bisection),
A002939 (bisection),
A078358 (complement).
Cf.
A045943 (4-cycles in triangular honeycomb acute knight graph),
A028896 (5-cycles),
A152773 (6-cycles).
-
a002378 n = n * (n + 1)
a002378_list = zipWith (*) [0..] [1..]
-- Reinhard Zumkeller, Aug 27 2012, Oct 12 2011
-
[n*(n+1) : n in [0..100]]; // Wesley Ivan Hurt, Oct 26 2015
-
A002378 := proc(n)
n*(n+1) ;
end proc:
seq(A002378(n),n=0..100) ;
-
Table[n(n + 1), {n, 0, 50}] (* Robert G. Wilson v, Jun 19 2004 *)
oblongQ[n_] := IntegerQ @ Sqrt[4 n + 1]; Select[Range[0, 2600], oblongQ] (* Robert G. Wilson v, Sep 29 2011 *)
2 Accumulate[Range[0, 50]] (* Harvey P. Dale, Nov 11 2011 *)
LinearRecurrence[{3, -3, 1}, {2, 6, 12}, {0, 20}] (* Eric W. Weisstein, Jul 27 2017 *)
-
{a(n) = n*(n+1)};
-
concat(0, Vec(2*x/(1-x)^3 + O(x^100))) \\ Altug Alkan, Oct 26 2015
-
is(n)=my(m=sqrtint(n)); m*(m+1)==n \\ Charles R Greathouse IV, Nov 01 2018
-
is(n)=issquare(4*n+1) \\ Charles R Greathouse IV, Mar 16 2022
-
def a(n): return n*(n+1)
print([a(n) for n in range(51)]) # Michael S. Branicky, Jan 13 2022
-
(2 to 100 by 2).scanLeft(0)( + ) // Alonso del Arte, Sep 12 2019
A046092
4 times triangular numbers: a(n) = 2*n*(n+1).
Original entry on oeis.org
0, 4, 12, 24, 40, 60, 84, 112, 144, 180, 220, 264, 312, 364, 420, 480, 544, 612, 684, 760, 840, 924, 1012, 1104, 1200, 1300, 1404, 1512, 1624, 1740, 1860, 1984, 2112, 2244, 2380, 2520, 2664, 2812, 2964, 3120, 3280, 3444, 3612, 3784, 3960, 4140, 4324
Offset: 0
a(7)=112 because 112 = 2*7*(7+1).
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first such partitions, corresponding to a(n)=1,2,3,4, are 2+2, 4+4+2+2, 6+6+4+4+2+2, 8+8+6+6+4+4+2+2. - _Augustine O. Munagi_, Dec 18 2008
- George E. Andrews and Bruce C. Berndt, Ramanujan's Lost Notebook, Part I, Springer, 2005.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
- Albert H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
- Ronald L. Graham, D. E. Knuth and Oren Patashnik, Concrete Mathematics, Reading, Massachusetts: Addison-Wesley, 1994.
- Peter Winkler, Mathematical Mind-Benders, Wellesley, Massachusetts: A K Peters, 2007.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- H. J. Brothers, Pascal's Prism: Supplementary Material.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47.
- Z. Janelidze, F. van Niekerk, and J. Viljoen, What is the maximal connected partial symmetry index of a connected graph of a given size?, arXiv:2502.00704 [math.CO], 2025. See p. 3.
- Milan Janjic, Two Enumerative Functions
- Ron Knott, Pythagorean Triples and Online Calculators
- Tanya Khovanova, A Miracle Equation.
- Augustine O. Munagi, Pairing conjugate partitions by residue classes, Discrete Math., 308 (2008), 2492-2501. [From _Augustine O. Munagi_, Dec 18 2008]
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
- Rusliansyah D. Suprijanto, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
- Leo Tavares, Illustration: Diamond Rows
- Herman Tulleken, Polyominoes 2.2: How they fit together, (2019).
- Eric Weisstein's World of Mathematics, Aztec Diamond.
- Eric Weisstein's World of Mathematics, Cocktail Party Graph.
- Eric Weisstein's World of Mathematics, Connected Dominating Set.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Pythagorean Triple.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A045943,
A028895,
A002943,
A054000,
A000330,
A007290,
A002378,
A033996,
A124080,
A028896,
A049598,
A005563,
A000217,
A033586,
A085250.
Cf. similar sequences listed in
A299645.
-
a046092 = (* 2) . a002378 -- Reinhard Zumkeller, Dec 15 2013
-
[2*n*(n+1): n in [0..50]]; // Vincenzo Librandi, Oct 04 2011
-
Table[2 n (n + 1), {n, 0, 50}] (* Stefan Steinerberger, Apr 03 2006 *)
LinearRecurrence[{3, -3, 1}, {0, 4, 12}, 50] (* Harvey P. Dale, Jul 25 2011 *)
4*Binomial[Range[50], 2] (* Harvey P. Dale, Jul 25 2011 *)
-
A046092(n):=2*n*(n+1)$
makelist(A046092(n),n,0,30); /* Martin Ettl, Nov 08 2012 */
-
a(n)=binomial(n+1,2)<<2 \\ Charles R Greathouse IV, Jun 10 2011
-
def A046092(n): return n*(n+1)<<1 # Chai Wah Wu, Mar 11 2025
A033996
8 times triangular numbers: a(n) = 4*n*(n+1).
Original entry on oeis.org
0, 8, 24, 48, 80, 120, 168, 224, 288, 360, 440, 528, 624, 728, 840, 960, 1088, 1224, 1368, 1520, 1680, 1848, 2024, 2208, 2400, 2600, 2808, 3024, 3248, 3480, 3720, 3968, 4224, 4488, 4760, 5040, 5328, 5624, 5928, 6240, 6560, 6888, 7224, 7568, 7920, 8280
Offset: 0
Spiral with 0, 8, 24, 48, ... along lower right diagonal:
.
36--37--38--39--40--41--42
| |
35 16--17--18--19--20 43
| | | |
34 15 4---5---6 21 44
| | | | | |
33 14 3 0 7 22 45
| | | | \ | | |
32 13 2---1 8 23 46
| | | \ | |
31 12--11--10---9 24 47
| | \ |
30--29--28--27--26--25 48
\
[Reformatted by _Jon E. Schoenfield_, Dec 25 2016]
- Stuart M. Ellerstein, J. Recreational Math. 29 (3) 188, 1998.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- M. K. Siddiqui, M. Naeem, N. A. Rahman, and M. Imran, Computing topological indices of certain networks, J. of Optoelectronics and Advanced Materials, 18, No. 9-10, 2016, 884-892.
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
- Leo Tavares, Illustration: Centroid Diamonds.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Eric Weisstein's World of Mathematics, Hamiltonian Path.
- Eric Weisstein's World of Mathematics, Knight Graph.
- Stephen Wolfram, A New Kind of Science
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
- Index entries for sequences related to cellular automata
- Index to 2D 5-Neighbor Cellular Automata.
- Index to Elementary Cellular Automata.
Cf.
A000217,
A016754,
A002378,
A024966,
A027468,
A028895,
A028896,
A045943,
A046092,
A049598,
A088538,
A124080,
A008590 (first differences),
A130809 (partial sums).
Sequences from spirals:
A001107,
A002939,
A002943,
A007742,
A033951,
A033952,
A033953,
A033954,
A033988,
A033989,
A033990,
A033991,
A033996. -
Omar E. Pol, Dec 12 2008
-
[ 4*n*(n+1) : n in [0..50] ]; // Wesley Ivan Hurt, Jun 09 2014
-
seq(8*binomial(n+1, 2), n=0..46); # Zerinvary Lajos, Nov 24 2006
[seq((2*n+1)^2-1, n=0..46)];
-
Table[(2n - 1)^2 - 1, {n, 50}] (* Alonso del Arte, Mar 31 2013 *)
-
nsqm1(n) = { forstep(x=1,n,2, y = x*x-1; print1(y, ", ") ) }
A062786
Centered 10-gonal numbers.
Original entry on oeis.org
1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, 1201, 1361, 1531, 1711, 1901, 2101, 2311, 2531, 2761, 3001, 3251, 3511, 3781, 4061, 4351, 4651, 4961, 5281, 5611, 5951, 6301, 6661, 7031, 7411, 7801, 8201, 8611, 9031, 9461, 9901, 10351, 10811
Offset: 1
- T. D. Noe, Table of n, a(n) for n = 1..1000
- Leo Tavares, Illustration: Pentagonal Stars.
- Leo Tavares, Illustration: Mid-section Stars.
- Leo Tavares, Illustration: Mid-section Star Pillars.
- Leo Tavares, Illustration: Trapezoidal Rays.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A001263,
A124080,
A101321,
A028387,
A016861,
A003154,
A005891,
A000217,
A004466,
A144390,
A000326,
A060544.
Cf. also
A016754,
A002378,
A069099,
A045943,
A003215,
A046092,
A001844,
A028896,
A005448,
A024966,
A082970.
-
List([1..50], n-> 1+5*n*(n-1)); # G. C. Greubel, Mar 30 2019
-
[1+5*n*(n-1): n in [1..50]]; // G. C. Greubel, Mar 30 2019
-
FoldList[#1+#2 &, 1, 10Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
1+5*Pochhammer[Range[50]-1, 2] (* G. C. Greubel, Mar 30 2019 *)
-
j=[]; for(n=1,75,j=concat(j,(5*n*(n-1)+1))); j
-
for (n=1, 1000, write("b062786.txt", n, " ", 5*n*(n - 1) + 1) ) \\ Harry J. Smith, Aug 11 2009
-
def a(n): return(5*n**2-5*n+1) # Torlach Rush, May 10 2024
-
[1+5*rising_factorial(n-1, 2) for n in (1..50)] # G. C. Greubel, Mar 30 2019
A028896
6 times triangular numbers: a(n) = 3*n*(n+1).
Original entry on oeis.org
0, 6, 18, 36, 60, 90, 126, 168, 216, 270, 330, 396, 468, 546, 630, 720, 816, 918, 1026, 1140, 1260, 1386, 1518, 1656, 1800, 1950, 2106, 2268, 2436, 2610, 2790, 2976, 3168, 3366, 3570, 3780, 3996, 4218, 4446, 4680, 4920, 5166, 5418, 5676
Offset: 0
Joe Keane (jgk(AT)jgk.org), Dec 11 1999
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Allan Bickle and Zhongyuan Che, Irregularities of Maximal k-degenerate Graphs, Discrete Applied Math. 331 (2023) 70-87.
- Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Enrique Navarrete and Daniel Orellana, Finding Prime Numbers as Fixed Points of Sequences, arXiv:1907.10023 [math.NT], 2019.
- Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
- Leo Tavares, Illustration: Centroid Hexagons.
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000217,
A000567,
A003215,
A008588,
A024966,
A028895,
A033996,
A046092,
A049598,
A084939,
A084940,
A084941,
A084942,
A084943,
A084944,
A124080.
Cf.
A002378 (3-cycles in triangular honeycomb acute knight graph),
A045943 (4-cycles),
A152773 (6-cycles).
-
List([0..44],n->3*n*(n+1)); # Muniru A Asiru, Mar 15 2019
-
[3*n*(n+1): n in [0..50]]; // Wesley Ivan Hurt, Jun 09 2014
-
[seq(6*binomial(n,2),n=1..44)]; # Zerinvary Lajos, Nov 24 2006
-
6 Accumulate[Range[0, 50]] (* Harvey P. Dale, Mar 05 2012 *)
6 PolygonalNumber[Range[0, 20]] (* Eric W. Weisstein, Jul 27 2017 *)
LinearRecurrence[{3, -3, 1}, {0, 6, 18}, 20] (* Eric W. Weisstein, Jul 27 2017 *)
-
a(n)=3*n*(n+1) \\ Charles R Greathouse IV, Sep 24 2015
-
first(n) = Vec(6*x/(1 - x)^3 + O(x^n), -n) \\ Iain Fox, Feb 14 2018
-
def A028896(n): return 3*n*(n+1) # Chai Wah Wu, Aug 07 2025
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A195148
Concentric 20-gonal numbers.
Original entry on oeis.org
0, 1, 20, 41, 80, 121, 180, 241, 320, 401, 500, 601, 720, 841, 980, 1121, 1280, 1441, 1620, 1801, 2000, 2201, 2420, 2641, 2880, 3121, 3380, 3641, 3920, 4201, 4500, 4801, 5120, 5441, 5780, 6121, 6480, 6841, 7220, 7601, 8000, 8401, 8820, 9241, 9680, 10121
Offset: 0
-
[5*n^2+2*(-1)^n-2: n in [0..50]]; // Vincenzo Librandi, Sep 27 2011
-
LinearRecurrence[{2,0,-2,1},{0,1,20,41},50] (* Harvey P. Dale, Apr 08 2016 *)
-
a(n)=5*n^2+2*(-1)^n-2 \\ Charles R Greathouse IV, Sep 28 2015
A069131
Centered 18-gonal numbers.
Original entry on oeis.org
1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1
a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- John Elias, Illustration of Initial Terms: Triangular & Hexagonal Configurations.
- Lamine Ngom, An origin of A069131 (illustration).
- Leo Tavares, Illustration: Tri-Hexagons.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. centered polygonal numbers listed in
A069190.
Cf.
A000217,
A028387,
A195042,
A016945,
A002378,
A082040,
A304163,
A003215,
A247792,
A016777,
A016778,
A016790,
A010008,
A008600,
A002061.
Cf.
A000290,
A139278,
A069129,
A062786,
A033996,
A060544,
A027468,
A016754,
A124080,
A069099,
A152740,
A049598,
A005891,
A152741,
A001844,
A163756,
A005448,
A194715.
-
[9*n^2 - 9*n + 1 : n in [1..50]]; // Wesley Ivan Hurt, May 05 2021
-
FoldList[#1 + #2 &, 1, 18 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{3,-3,1},{1,19,55},50] (* Harvey P. Dale, Jan 20 2014 *)
-
a(n)=9*n^2-9*n+1 \\ Charles R Greathouse IV, Oct 07 2015
A152740
11 times triangular numbers.
Original entry on oeis.org
0, 11, 33, 66, 110, 165, 231, 308, 396, 495, 605, 726, 858, 1001, 1155, 1320, 1496, 1683, 1881, 2090, 2310, 2541, 2783, 3036, 3300, 3575, 3861, 4158, 4466, 4785, 5115, 5456, 5808, 6171, 6545, 6930, 7326, 7733, 8151, 8580, 9020, 9471, 9933, 10406, 10890, 11385, 11891
Offset: 0
Cf.
A000217,
A022268,
A022269,
A049598,
A051865,
A069125,
A124080,
A180223,
A195149,
A195313,
A211013,
A218530.
-
[11*n*(n+1)/2 : n in [0..60]]; // Wesley Ivan Hurt, Dec 22 2015
-
A152740:=n->11*n*(n+1)/2: seq(A152740(n), n=0..60); # Wesley Ivan Hurt, Dec 22 2015
-
Table[11*n*(n - 1)/2, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 11, 33}, 100] (* G. C. Greubel, Dec 22 2015 *)
-
my(x='x+O('x^100)); concat(0, Vec(11*x/(1-x)^3)) \\ Altug Alkan, Dec 23 2015
Showing 1-10 of 15 results.
Comments