cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Felix P. Muga II

Felix P. Muga II's wiki page.

Felix P. Muga II has authored 4 sequences.

A239549 Expansion of x/(1-8*x-12*x^2).

Original entry on oeis.org

0, 1, 8, 76, 704, 6544, 60800, 564928, 5249024, 48771328, 453158912, 4210527232, 39122124800, 363503325184, 3377492099072, 31381976694784, 291585718747136, 2709269470314496, 25173184387481600, 233896708743626752, 2173251882598793216
Offset: 0

Author

Felix P. Muga II, Mar 21 2014

Keywords

Comments

The limit of a(n+1)/a(n) is equal to 2+sqrt(7) as n approaches infinity.
This is the Lucas sequence U(8,-12).
For any three-term recurrence S(n) = S(n-1)*x1 + S(n-2)*x2*1, with S(-1) = 0 and S(0) = 1, with n-independent coefficients (like here x1=8 and x2=12) one can use the standard Morse code with a dot of length 1 standing for x1 and a dash of length 2 standing for x2. The Morse code polynomial S(x1,x2;n) is then obtained by summing over all codes of length n. E.g., S(x1,x2;3) = x1^3 + 2*x1*x2 from dot dot dot, dot dash and dash dot. Here x1=8 and x2=12 (labeled dots and dashes). For example, S(3) = 8*(8^2 + 2*12) = 704 = b(3) = a(4), because in a the offset differs from the one for S. See the Graham et al. book, on Morse code polynomials (Euler's continuants), p 302. This comment was motivated by an earlier one from the author of this sequence. - Wolfdieter Lang, Mar 27 2014
a(n-1) (for n>=1) is the number of compositions of n into 8 kinds of parts 1 and 12 kinds of parts 2. - Joerg Arndt, Mar 26 2014

References

  • R. L. Graham, D. E. Knuth, L. O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.

Crossrefs

Programs

  • Haskell
    a239549 n = a239549_list !! n
    a239549_list = 0 : 1 : zipWith (+)
                   (map (* 8) $ tail a239549_list) (map (* 12) a239549_list)
    -- Reinhard Zumkeller, Feb 20 2015
  • Mathematica
    CoefficientList[Series[x / (1 - 8 x - 12 x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *)
    LinearRecurrence[{8,12},{0,1},30] (* Harvey P. Dale, Nov 14 2021 *)

Formula

a(n) = 8*a(n-1) + 12*a(n-2) for n > 1 and a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x - 12*x^2).
a(n) = (1/(4*sqrt(7)))*( (4+2*sqrt(7))^n - (4-2*sqrt(7))^n ).
a(0) = 0 and a(n) = 2^(n-1) * A015530(n) for n > 0.
a(n) = A011782(n) * A015530(n) =2^(n-1)*A015530(n) for n >= 0.
a(n+1) = b(n) = sum(binomial(n-k, k)*8^(n-2*k)*12^k, k = 0..floor(n/2)), n>=0, b(-1) := 0. From Morse code counting, with n-2*k the number of dots and k the number of dashes for code length n. See the comment and example for b(3) = S(3) above. - Wolfdieter Lang, Mar 26 2014

A239294 a(n) = (15^n - (-3)^n)/18.

Original entry on oeis.org

0, 1, 12, 189, 2808, 42201, 632772, 9492309, 142382448, 2135743281, 32036129532, 480542002029, 7208129853288, 108121948330761, 1621829223367092, 24327438355289349, 364911575314991328, 5473673629767916641, 82105104446389609452
Offset: 0

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2=(k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1|< 1. Thus, a(n+1)/a(n) converges to r1 as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 with k=12 and t=45. Thus, we use this as the name of the sequence.
If n > 25, then |a(n+1)/a(n) - 15| < 10^(-16).
a(n+2) is the number of strings of length n containing the 12-ary digits 0,1,...,9,A,B or any of the 45 two-consecutive digits C0,C1,...,C9,CA,...,CZ,Ca,...,Ci where A corresponds to 10, B to 11, ..., Z to 35, a to 36, ..., i to 44.

Programs

  • Mathematica
    Table[(15^n-(-3)^n)/18,{n,0,20}] (* or *) LinearRecurrence[{12,45},{0,1},20] (* Harvey P. Dale, Apr 29 2019 *)
  • PARI
    a(n) = (15^n - (-3)^n)/18; \\ Michel Marcus, Mar 16 2014

Formula

G.f.: x/((1-15*x)*(1+3*x)).
a(n) = 12*a(n-1)+45*a(n-2), for n>=2, a(0)=0, a(1)=1.
a(n) = (1/18)*(A001024(n) - (-1)^n * A000244(n)).
a(n) = A000244(n-1) * Sum_{k=0...n-1} (A000351(k) * A033999(n-1-k)).

A239285 a(n) = (15^n - (-2)^n)/17.

Original entry on oeis.org

0, 1, 13, 199, 2977, 44671, 670033, 10050559, 150758257, 2261374111, 33920611153, 508809168319, 7632137522737, 114482062845151, 1717230942669073, 25758464140052479, 386376962100754417, 5795654431511381791, 86934816472670595793, 1304022247090059199039
Offset: 0

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2 = (k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1| < 1. Thus, a(n+1)/a(n) converges to r1 as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 with k=13 and t=30.
If n > 20, then |a(n+1)/a(n) - 15| < 10^(-16).
Let b(n) be the number of strings of length n containing the 13-ary digits: 0,...,9,A,B,C or the 30 two-consecutive digits D0,D1,...,D9,DA,...,DT where A corresponds to 10, ..., T corresponds to 29. Then b(0)=1=a(2) and b(1)=13=a(3). The strings q_1q_2...q_n of length n can be partitioned into 2 groups A and B where A contains the strings where q_1=0,1,...,9,A,B,C and B contains the strings where q_1=D. Thus, |A|=13*b(n-1) and |B|=30*b(n-2). Hence, b(n) = 13*b(n-1) + 30*b(n-2) for n>1. Since b(0)=a(2) and b(1)=a(3), we can show that b(n) = a(n+2).

Crossrefs

Programs

  • Magma
    [(15^n -(-2)^n)/17: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    CoefficientList[Series[x/(1-13*x-30*x^2), {x,0,50}], x] (* or *) Table[
    (15^n - (-2)^n)/17, {n,0,30}] (* or *) LinearRecurrence[{13,30}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n) = (15^n-(-2)^n)/17; \\ Michel Marcus, Mar 16 2014
    
  • PARI
    x='x+O('x^30); concat([0], Vec()) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: x/(1 - 13*x - 30*x^2).
a(n) = 13*a(n-1) + 30*a(n-2) for n >= 2, a(0)=0, a(1)=1.
a(n) = (1/17)*(A001024(n) - A122803(n)), n >= 0.
a(0)=0, a(n) = Sum_{k=0..n-1} A001024(k)*A122803(n-1-k) for n > 0.
E.g.f.: (exp(15*x) - exp(-2*x))/17. - G. C. Greubel, May 26 2018

A239284 a(n) = (15^n - (-1)^n)/16.

Original entry on oeis.org

0, 1, 14, 211, 3164, 47461, 711914, 10678711, 160180664, 2402709961, 36040649414, 540609741211, 8109146118164, 121637191772461, 1824557876586914, 27368368148803711, 410525522232055664, 6157882833480834961, 92368242502212524414, 1385523637533187866211
Offset: 0

Author

Felix P. Muga II, Mar 14 2014

Keywords

Comments

Let k and t be positive integers and consider a(n) = k*a(n-1)+t*a(n-2) for n>=2, with a(0)=0, a(1)=1.
The roots of its characteristic equation are r1 = (k+sqrt(k^2+4t))/2 and r2 =(k-sqrt(k^2+4t))/2. Hence, the solution to the recurrence relation is the sequence {a(n)} where a(n) = alpha1*r1^n + alpha2*r2^n. It can be shown that alpha1 = 1/sqrt(k^2+4t) and alpha2 = -alpha1. It can be shown also that |r2/r1|< 1. Thus, the ratio a(n+1)/a(n) converges to r as n approaches infinity.
Note that limit a(n+1)/a(n) = 15 as n approaches infinity with k=14 and t=15.
If n > 15 then | a(n+1)/a(n) - 15 | < 10^(-16).
The number of walks of length n between any two distinct vertices of the complete graph K_16. - Peter Bala, May 30 2024

Crossrefs

Cf. A062160 (row 15).

Programs

  • Magma
    [(15^n - (-1)^n)/16: n in [0..30]]; // G. C. Greubel, May 26 2018
  • Mathematica
    CoefficientList[Series[x/(1-14*x-15*x^2), {x,0,50}], x] (* or *) Table[ (15^n - (-1)^n)/16, {n,0,30}] (* or *) LinearRecurrence[{14,15}, {0,1}, 30] (* G. C. Greubel, May 26 2018 *)
  • PARI
    a(n) = (15^n - (-1)^n)/16; \\ Michel Marcus, Mar 16 2014
    
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/(1 -14*x - 15*x^2))) \\ G. C. Greubel, May 26 2018
    

Formula

G.f.: x/(1 - 14*x - 15*x^2).
a(n) = 14*a(n-1) + 15*a(n-2) for n > 1, a(0) = 0, a(1) = 1.
a(n) = (1/16)*(15^n - (-1)^n).
a(n) = (1/16)*( A001024(n) - A033999(n) ).
E.g.f.: (exp(15*x) - exp(-x))/16. - G. C. Greubel, May 26 2018