A239549 Expansion of x/(1-8*x-12*x^2).
0, 1, 8, 76, 704, 6544, 60800, 564928, 5249024, 48771328, 453158912, 4210527232, 39122124800, 363503325184, 3377492099072, 31381976694784, 291585718747136, 2709269470314496, 25173184387481600, 233896708743626752, 2173251882598793216
Offset: 0
References
- R. L. Graham, D. E. Knuth, L. O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (8,12).
Programs
-
Haskell
a239549 n = a239549_list !! n a239549_list = 0 : 1 : zipWith (+) (map (* 8) $ tail a239549_list) (map (* 12) a239549_list) -- Reinhard Zumkeller, Feb 20 2015
-
Mathematica
CoefficientList[Series[x / (1 - 8 x - 12 x^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 28 2014 *) LinearRecurrence[{8,12},{0,1},30] (* Harvey P. Dale, Nov 14 2021 *)
Formula
a(n) = 8*a(n-1) + 12*a(n-2) for n > 1 and a(0)=0, a(1)=1.
G.f.: x/(1 - 8*x - 12*x^2).
a(n) = (1/(4*sqrt(7)))*( (4+2*sqrt(7))^n - (4-2*sqrt(7))^n ).
a(0) = 0 and a(n) = 2^(n-1) * A015530(n) for n > 0.
a(n+1) = b(n) = sum(binomial(n-k, k)*8^(n-2*k)*12^k, k = 0..floor(n/2)), n>=0, b(-1) := 0. From Morse code counting, with n-2*k the number of dots and k the number of dashes for code length n. See the comment and example for b(3) = S(3) above. - Wolfdieter Lang, Mar 26 2014
Comments