A320660 Number of business cards required to build an origami level n Jerusalem cube.
12, 72, 672, 6048, 55488, 511872, 4738560, 43943424, 407890944, 3787941888, 35186122752, 326885842944, 3037038034944, 28217571901440, 262178452930560, 2436006721486848, 22634041833160704, 210303674768424960, 1954034324430913536, 18155901427591938048
Offset: 0
Examples
a(2) = 672 because 456 business cards are needed for the squeleton and 216 more for the panels.
References
- Eric Baird, L'art fractal, Tangente 150 (2013), 45.
- Thomas Hull, Project Origami: Activities for Exploring Mathematics, A K Peters/CRC Press, 2006.
Links
- Eric Baird, The Jerusalem Cube
- Malachi B-J. Brown, Business Card Origami
- Robert Dickau, Cross Menger (Jerusalem) Cube Fractal
- Origami Resource Center, Jerusalem Cube Fractal (Level 1)
- Franck Ramaharo, An approximate Jerusalem square whose side equals a Pell number, arXiv:1801.00466 [math.CO], 2018.
- Wikipedia, Cube de Jérusalem [In French]
- Index entries for linear recurrences with constant coefficients, signature (12, -16, -80, -48)
Crossrefs
Programs
-
Mathematica
LinearRecurrence[{12, -16, -80, -48}, {12, 72, 672, 6048}, 20]
-
Maxima
makelist((3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n), n, 0, 20), ratsimp;
Formula
a(n) = (3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n).
a(n) = 12*a(n-1) - 16*a(n-2) - 80*a(n-3) - 48*a(n-4), n > 4.
G.f.: 12*(1 - 6*x + 8*x^3)/((1-4*x-4*x^2)*(1-8*x-12*x^2)) .
E.g.f.: (3/14)*(7*exp((2 - 2*sqrt(2))*x) + 7*exp((2 + 2*sqrt(2))*x) + (21 - 5*sqrt(7))*exp((4 - 2*sqrt(7))*x) + (21 + 5*sqrt(7))*exp((4 + 2*sqrt(7))*x)).
Comments