cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A320660 Number of business cards required to build an origami level n Jerusalem cube.

Original entry on oeis.org

12, 72, 672, 6048, 55488, 511872, 4738560, 43943424, 407890944, 3787941888, 35186122752, 326885842944, 3037038034944, 28217571901440, 262178452930560, 2436006721486848, 22634041833160704, 210303674768424960, 1954034324430913536, 18155901427591938048
Offset: 0

Views

Author

Keywords

Comments

The actual Jerusalem cube fractal cannot be built using a simple integer grid. However, one can create an approximate one by choosing the cube side length to be a Pell number (see link).
In practice, the first two terms represent the level 0 because they both consist of cubes (1 X 1 X 1 and 2 X 2 X 2, respectively). The "cross" shape appears at index 2, which is usually considered as the first iteration (for example, the "hole" shape in the Menger Sponge is visible at level 1).
The limit of a(n+1)/a(n) is equal to 2*(2+sqrt(7)) as n approaches infinity.

Examples

			a(2) = 672 because 456 business cards are needed for the squeleton and 216 more for the panels.
		

References

  • Eric Baird, L'art fractal, Tangente 150 (2013), 45.
  • Thomas Hull, Project Origami: Activities for Exploring Mathematics, A K Peters/CRC Press, 2006.

Crossrefs

At the n-th level, the cube side length is A000129(n+1), the squeleton requires 6*A239549(n+1) business cards, and each face requires A057087(n) units for the panels.
Cf. A212596 (Origami Menger sponge), A304960 (Origami Mosely snowflake sponge).

Programs

  • Mathematica
    LinearRecurrence[{12, -16, -80, -48}, {12, 72, 672, 6048}, 20]
  • Maxima
    makelist((3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n), n, 0, 20), ratsimp;

Formula

a(n) = (3/14)*(7*(2 - 2*sqrt(2))^n + 7*(2 + 2*sqrt(2))^n + (21 - 5*sqrt(7))*(4 - 2*sqrt(7))^n + (21 + 5*sqrt(7))*(4 + 2*sqrt(7))^n).
a(n) = 12*a(n-1) - 16*a(n-2) - 80*a(n-3) - 48*a(n-4), n > 4.
G.f.: 12*(1 - 6*x + 8*x^3)/((1-4*x-4*x^2)*(1-8*x-12*x^2)) .
E.g.f.: (3/14)*(7*exp((2 - 2*sqrt(2))*x) + 7*exp((2 + 2*sqrt(2))*x) + (21 - 5*sqrt(7))*exp((4 - 2*sqrt(7))*x) + (21 + 5*sqrt(7))*exp((4 + 2*sqrt(7))*x)).
a(n) = 3*( A084128(n) -2*A239549(n) +3*A239549(n+1) ). - R. J. Mathar, Mar 06 2022
Showing 1-1 of 1 results.