A307065 Decimal expansion of the negative real attracting fixed point of Э(s) = (1 - 2^s) * (1 - 2^(1 - s)) * gamma(s) * zeta(s) * beta(s) / Pi^s.
1, 7, 8, 4, 8, 3, 0, 9, 7, 1, 4, 2, 9, 5, 4, 5, 7, 0, 2, 8, 6, 0, 5, 7, 5, 4, 6, 6, 4, 2, 0, 3, 7, 0, 7, 6, 9, 9, 7, 8, 3, 1, 5, 9, 1, 5, 5, 9, 5, 0, 7, 2, 6, 1, 0, 4, 4, 7, 8, 5, 7, 2, 1, 3, 8, 6, 4, 9, 3, 3, 1, 7, 9, 2, 4, 1, 3, 6, 1, 7, 4, 9, 5, 3, 4, 0, 3, 7, 1, 7, 8, 9, 9, 8, 8, 7, 1, 2, 1, 7
Offset: 0
Examples
-0.1784830971429545702860575466420370769978315915595...
References
- A. Ossicini, An alternative form of the functional equation for Riemann's Zeta function, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 56 (2008/09), 95-111.
Links
- Andrea Ossicini, An Alternative Form of the Functional Equation for Riemann's Zeta Function, II, arXiv:1206.4494 [math.HO], 2012-2014.
Programs
-
Mathematica
f[s_] := s - (1 - 2^s)(1 - 2^(1-s)) Gamma[s] Zeta[s] ((HurwitzZeta[s, 1/4] - HurwitzZeta[s, 3/4])/(4 Pi)^s); s0 = s /. FindRoot[f[s], {s, -1/5}, WorkingPrecision -> 100]; RealDigits[s0][[1]] (* Jean-François Alcover, May 07 2019 *)
-
PARI
solve(s = -1/2, -1/8, s - (1 - 2^s) * (1 - 2^(1 - s)) * gamma(s) * zeta(s) * (zetahurwitz(s, 1/4) - zetahurwitz(s, 3/4)) / (4 * Pi)^s)
Comments