A190914 Expansion of ( 5-9*x^2-2*x^3 ) / ( (1+x-x^2)*(1-x-x^2-x^3) ).
5, 0, 6, 3, 18, 10, 57, 42, 178, 165, 566, 616, 1821, 2236, 5914, 7963, 19362, 27982, 63813, 97394, 211458, 336633, 703786, 1157544, 2350597, 3964960, 7872702, 13541691, 26425522, 46147178, 88853297, 156994354, 299165378, 533410837, 1008343310, 1810544592, 3401446413, 6140811708, 11481472994, 20815538227
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,1,0,-1).
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (5-9*x^2 -2*x^3)/((1+x-x^2)*(1-x-x^2-x^3)) )); // G. C. Greubel, Apr 23 2019 -
Mathematica
LinearRecurrence[{0, 3, 1, 0, -1}, {5, 0, 6, 3, 18}, 40] (* G. C. Greubel, Apr 23 2019 *)
-
PARI
my(x='x+O('x^40)); Vec((5-9*x^2-2*x^3)/((1+x-x^2)*(1-x-x^2-x^3))) \\ G. C. Greubel, Apr 23 2019
-
SageMath
((5-9*x^2-2*x^3)/((1+x-x^2)*(1-x-x^2-x^3))).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019
Comments