cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A016742 Even squares: a(n) = (2*n)^2.

Original entry on oeis.org

0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 0

Views

Author

Keywords

Comments

4 times the squares.
Number of edges in the complete bipartite graph of order 5n, K_{n,4n} - Roberto E. Martinez II, Jan 07 2002
It is conjectured (I think) that a regular Hadamard matrix of order n exists iff n is an even square (cf. Seberry and Yamada, Th. 10.11). A Hadamard matrix is regular if the sum of the entries in each row is the same. - N. J. A. Sloane, Nov 13 2008
Sequence arises from reading the line from 0, in the direction 0, 16, ... and the line from 4, in the direction 4, 36, ... in the square spiral whose vertices are the squares A000290. - Omar E. Pol, May 24 2008
The entries from a(1) on can be interpreted as pair sums of (2, 2), (8, 8), (18, 18), (32, 32) etc. that arise from a re-arrangement of the subshell orbitals in the periodic table of elements. 8 becomes the maximum number of electrons in the (2s,2p) or (3s,3p) orbitals, 18 the maximum number of electrons in (4s,3d,4p) or (5s,3d,5p) shells, for example. - Julio Antonio Gutiérrez Samanez, Jul 20 2008
The first two terms of the sequence (n=1, 2) give the numbers of chemical elements using only n types of atomic orbitals, i.e., there are a(1)=4 elements (H,He,Li,Be) where electrons reside only on s-orbitals, there are a(2)=16 elements (B,C,N,O,F,Ne,Na,Mg,Al,Si,P,S,Cl,Ar,K,Ca) where electrons reside only on s- and p-orbitals. However, after that, there is 37 (which is one more than a(3)=36) elements (from Sc, Scandium, atomic number 21 to La, Lanthanum, atomic number 57) where electrons reside only on s-, p- and d-orbitals. This is because Lanthanum (with the electron configuration [Xe]5d^1 6s^2) is an exception to the Aufbau principle, which would predict that its electron configuration is [Xe]4f^1 6s^2. - Antti Karttunen, Aug 14 2008.
Number of cycles of length 3 in the king's graph associated with an (n+1) X (n+1) chessboard. - Anton Voropaev (anton.n.voropaev(AT)gmail.com), Feb 01 2009
a(n+1) is the molecular topological index of the n-star graph S_n. - Eric W. Weisstein, Jul 11 2011
a(n) is the sum of two consecutives odd numbers 2*n^2-1 and 2*n^2+1 and the difference of two squares (n^2+1)^2 - (n^2-1)^2. - Pierre CAMI, Jan 02 2012
For n > 3, a(n) is the area of the irregular quadrilateral created by the points ((n-4)*(n-3)/2,(n-3)*(n-2)/2), ((n-2)*(n-1)/2,(n-1)*n/2), ((n+1)*(n+2)/2,n*(n+1)/2), and ((n+3)*(n+4)/2,(n+2)*(n+3)/2). - J. M. Bergot, May 27 2014
Number of terms less than 10^k: 1, 2, 5, 16, 50, 159, 500, 1582, 5000, 15812, 50000, 158114, 500000, ... - Muniru A Asiru, Jan 28 2018
Right-hand side of the binomial coefficient identity Sum_{k = 0..2*n} (-1)^(k+1)* binomial(2*n,k)*binomial(2*n + k,k)*(2*n - k) = a(n). - Peter Bala, Jan 12 2022

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
  • W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-New York, 1972. iv+508 pp.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. sequences listed in A254963.
Other n X n king graph cycle counts: A288918 (4-cycles), A288919 (5-cycles), A288920 (6-cycles).
Cf. A016813.

Programs

Formula

O.g.f.: 4*x*(1+x)/(1-x)^3. - R. J. Mathar, Jul 28 2008
a(n) = A000290(n)*4 = A001105(n)*2. - Omar E. Pol, May 21 2008
a(n) = A155955(n,2) for n > 1. - Reinhard Zumkeller, Jan 31 2009
Sum_{n>=1} 1/a(n) = (1/4)*Pi^2/6 = Pi^2/24. - Ant King, Nov 04 2009
a(n) = a(n-1) + 8*n - 4 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 4, a(2) = 16. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+3). - Philippe Deléham, Mar 26 2013
Pi = 2*Product_{n>=1} (1 + 1/(a(n)-1)). - Adriano Caroli, Aug 04 2013
Pi = Sum_{n>=0} 8/(a(2n+1)-1). - Adriano Caroli, Aug 06 2013
E.g.f.: exp(x)*(4x^2 + 4x). - Geoffrey Critzer, Oct 07 2013
a(n) = A000384(n) + A014105(n). - Bruce J. Nicholson, Nov 11 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi^2/48 (A245058). - Amiram Eldar, Oct 10 2020
From Amiram Eldar, Jan 25 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = sinh(Pi/2)/(Pi/2) (A308716).
Product_{n>=1} (1 - 1/a(n)) = sin(Pi/2)/(Pi/2) = 2/Pi (A060294). (End)
a(n) = A016754(n) - A016813(n). - Leo Tavares, Feb 24 2022

Extensions

More terms from Sabir Abdus-Samee (sabdulsamee(AT)prepaidlegal.com), Mar 13 2006

A001107 10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).

Original entry on oeis.org

0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0

Views

Author

Keywords

Comments

Write 0, 1, 2, ... in a square spiral, with 0 at the origin and 1 immediately below it; sequence gives numbers on the negative y-axis (see Example section).
Number of divisors of 48^(n-1) for n > 0. - J. Lowell, Aug 30 2008
a(n) is the Wiener index of the graph obtained by connecting two copies of the complete graph K_n by an edge (for n = 3, approximately: |>-<|). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph. - Emeric Deutsch, Sep 20 2010
This sequence does not contain any squares other than 0 and 1. See A188896. - T. D. Noe, Apr 13 2011
For n > 0: right edge of the triangle A033293. - Reinhard Zumkeller, Jan 18 2012
Sequence found by reading the line from 0, in the direction 0, 10, ... and the parallel line from 1, in the direction 1, 27, ..., in the square spiral whose vertices are the generalized decagonal numbers A074377. - Omar E. Pol, Jul 18 2012
Partial sums give A007585. - Omar E. Pol, Jan 15 2013
This is also a star pentagonal number: a(n) = A000326(n) + 5*A000217(n-1). - Luciano Ancora, Mar 28 2015
Also the number of undirected paths in the n-sunlet graph. - Eric W. Weisstein, Sep 07 2017
After 0, a(n) is the sum of 2*n consecutive integers starting from n-1. - Bruno Berselli, Jan 16 2018
Number of corona of an H0 hexagon with a T(n) triangle. - Craig Knecht, Dec 13 2024

Examples

			On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
  99  64--65--66--67--68--69--70--71--72
   |   |                               |
  98  63  36--37--38--39--40--41--42  73
   |   |   |                       |   |
  97  62  35  16--17--18--19--20  43  74
   |   |   |   |               |   |   |
  96  61  34  15   4---5---6  21  44  75
   |   |   |   |   |       |   |   |   |
  95  60  33  14   3  *0*  7  22  45  76
   |   |   |   |   |   |   |   |   |   |
  94  59  32  13   2--*1*  8  23  46  77
   |   |   |   |           |   |   |   |
  93  58  31  12--11-*10*--9  24  47  78
   |   |   |                   |   |   |
  92  57  30--29--28-*27*-26--25  48  79
   |   |                           |   |
  91  56--55--54--53-*52*-51--50--49  80
   |                                   |
  90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
		

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
  • Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A093565 ((8, 1) Pascal, column m = 2). Partial sums of A017077.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. A003215.

Programs

  • Magma
    [4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
    
  • Maple
    A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
    Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
    Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
    PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
    LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
  • PARI
    a(n)=4*n^2-3*n
    
  • Python
    a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
    def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
         x, y = 1, 1
         yield 0
         while True:
             yield x
             x, y = x + y + 8, y + 8
    A001107 = aList()
    print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019

Formula

a(n) = A033954(-n) = A074377(2*n-1).
a(n) = n + 8*A000217(n-1). - Floor van Lamoen, Oct 14 2005
G.f.: x*(1 + 7*x)/(1 - x)^3.
Partial sums of odd numbers 1 mod 8, i.e., 1, 1 + 9, 1 + 9 + 17, ... . - Jon Perry, Dec 18 2004
1^3 + 3^3*(n-1)/(n+1) + 5^3*((n-1)*(n-2))/((n+1)*(n+2)) + 7^3*((n-1)*(n-2)*(n-3))/((n+1)*(n+2)*(n+3)) + ... = n*(4*n-3) [Ramanujan]. - Neven Juric, Apr 15 2008
Starting (1, 10, 27, 52, ...), this is the binomial transform of [1, 9, 8, 0, 0, 0, ...]. - Gary W. Adamson, Apr 30 2008
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=1, a(2)=10. - Jaume Oliver Lafont, Dec 02 2008
a(n) = 8*n + a(n-1) - 7 for n>0, a(0)=0. - Vincenzo Librandi, Jul 10 2010
a(n) = 8 + 2*a(n-1) - a(n-2). - Ant King, Sep 04 2011
a(n) = A118729(8*n). - Philippe Deléham, Mar 26 2013
a(8*a(n) + 29*n+1) = a(8*a(n) + 29*n) + a(8*n + 1). - Vladimir Shevelev, Jan 24 2014
Sum_{n >= 1} 1/a(n) = Pi/6 + log(2) = 1.216745956158244182494339352... = A244647. - Vaclav Kotesovec, Apr 27 2016
From Ilya Gutkovskiy, Aug 28 2016: (Start)
E.g.f.: x*(1 + 4*x)*exp(x).
Sum_{n >= 1} (-1)^(n+1)/a(n) = (sqrt(2)*Pi - 2*log(2) + 2*sqrt(2)*log(1 + sqrt(2)))/6 = 0.92491492293323294695... (End)
a(n) = A000217(3*n-2) - A000217(n-2). In general, if P(k,n) be the n-th k-gonal number and T(n) be the n-th triangular number, A000217(n), then P(T(k),n) = T((k-1)*n - (k-2)) - T(k-3)*T(n-2). - Charlie Marion, Sep 01 2020
Product_{n>=2} (1 - 1/a(n)) = 4/5. - Amiram Eldar, Jan 21 2021
a(n) = A003215(n-1) + A000290(n) - 1. - Leo Tavares, Jul 23 2022

A002939 a(n) = 2*n*(2*n-1).

Original entry on oeis.org

0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a spiral; sequence gives numbers on one of 4 diagonals (see Example section).
For n>1 this is the Engel expansion of cosh(1), A118239. - Benoit Cloitre, Mar 03 2002
a(n) = A125199(n,n) for n>0. - Reinhard Zumkeller, Nov 24 2006
Central terms of the triangle in A195437: a(n+1) = A195437(2*n,n). - Reinhard Zumkeller, Nov 23 2011
For n>2, the terms represent the sums of those primitive Pythagorean triples with hypotenuse (H) one unit longer than the longest side (L), or H = L + 1. - Richard R. Forberg, Jun 09 2015
For n>1, a(n) is the perimeter of a Pythagorean triangle with an odd leg 2*n-1. - Agola Kisira Odero, Apr 26 2016
From Rigoberto Florez, Nov 07 2020 : (Start)
A338109(n)/a(n+1) is the Kirchhoff index of the join of the disjoint union of two complete graphs on n vertices with the empty graph on n+1 vertices.
Equivalently, the graph can be described as the graph on 3*n + 1 vertices with labels 0..3*n and with i and j adjacent iff iff i+j> 0 mod 3.
A338588(n)/a(n+1) is the Kirchhoff index of the disjoint union of two complete graphs each on n and n+1 vertices with the empty graph on n+1 vertices.
Equivalently, the graph can be described as the graph on 3*n + 2 vertices with labels 0..3*n+1 and with i and j adjacent iff i+j> 0 mod 3.
These graphs are cographs. (End)
a(n), n>=1, is the number of paths of minimum length (length=2) from the origin to the cross polytope of size 2 in Z^n (column 2 in A371064). - Shel Kaphan, Mar 09 2024

Examples

			G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ...
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below:
.
   99  64--65--66--67--68--69--70--71--72
    |   |                               |
   98  63  36--37--38--39--40--41--42  73
    |   |   |                       |   |
   97  62  35  16--17--18--19--20  43  74
    |   |   |   |               |   |   |
   96  61  34  15   4---5---6  21  44  75
    |   |   |   |   |       |   |   |   |
   95  60  33  14   3  *0*  7  22  45  76
    |   |   |   |   |   |   |   |   |   |
   94  59  32  13  *2*--1   8  23  46  77
    |   |   |   |           |   |   |   |
   93  58  31 *12*-11--10---9  24  47  78
    |   |   |                   |   |   |
   92  57 *30*-29--28--27--26--25  48  79
    |   |                           |   |
   91 *56*-55--54--53--52--51--50--49  80
    |                                   |
  *90*-89--88--87--86--85--84--83--82--81
.
[Edited by _Jon E. Schoenfield_, Jan 01 2017]
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=8). - Bruno Berselli, Jun 10 2013
Cf. A017089 (first differences), A268684 (partial sums), A010050 (partial products).
Cf. A371064.

Programs

Formula

Sum_{n >= 1} 1/a(n) = log(2) (cf. Tijdeman).
Log(2) = Sum_{n >= 1} ((1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ...) = Sum_{n >= 0} (-1)^n/(n+1). Log(2) = Integral_{x=0..1} 1/(1+x) dx. - Gary W. Adamson, Jun 22 2003
a(n) = A000384(n)*2. - Omar E. Pol, May 14 2008
From R. J. Mathar, Apr 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(1+3*x)/(1-x)^3. (End)
a(n) = a(n-1) + 8*n - 6 (with a(0)=0). - Vincenzo Librandi, Nov 12 2010
a(n) = A118729(8n+1). - Philippe Deléham, Mar 26 2013
Product_{k=1..n} a(k) = (2n)! = A010050(n). - Tony Foster III, Sep 06 2015
E.g.f.: 2*x*(1 + 2*x)*exp(x). - Ilya Gutkovskiy, Apr 29 2016
a(n) = A002943(-n) for all n in Z. - Michael Somos, Jan 28 2017
0 = 12 + a(n)*(-8 + a(n) - 2*a(n+1)) + a(n+1)*(-8 + a(n+1)) for all n in Z. - Michael Somos, Jan 28 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - log(2)/2. - Amiram Eldar, Jul 31 2020

A002943 a(n) = 2*n*(2*n+1).

Original entry on oeis.org

0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190, 8556, 8930
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of edges in (n+1) X (n+1) square grid with all horizontal, vertical and diagonal segments filled in. - Asher Auel, Jan 12 2000
In other words, the edge count of the (n+1) X (n+1) king graph. - Eric W. Weisstein, Jun 20 2017
Write 0,1,2,... in clockwise spiral; sequence gives numbers on one of 4 diagonals. (See Example section.)
The identity (4*n+1)^2 - (4*n^2+2*n)*(2)^2 = 1 can be written as A016813(n)^2 - a(n)*2^2 = 1. - Vincenzo Librandi, Jul 20 2010 - Nov 25 2012
Starting with "6" = binomial transform of [6, 14, 8, 0, 0, 0, ...]. - Gary W. Adamson, Aug 27 2010
The hyper-Wiener index of the crown graph G(n) (n>=3). The crown graph G(n) is the graph with vertex set {x(1), x(2), ..., x(n), y(1), y(2), ..., y(n)} and edge set {(x(i), y(j)): 1 <= i,j <= n, i != j} (= the complete bipartite graph K(n,n) with horizontal edges removed). The Hosoya-Wiener polynomial of G(n) is n(n-1)(t+t^2)+nt^3. - Emeric Deutsch, Aug 29 2013
Sum of the numbers from n to 3n. - Wesley Ivan Hurt, Oct 27 2014

Examples

			64--65--66--67--68--69--70--71--72
|
63  36--37--38--39--40--41--42
|   |                       |
62  35  16--17--18--19--20  43
|   |   |               |   |
61  34  15   4---5---6  21  44
|   |   |    |       |  |   |
60  33  14   3   0   7  22  45
|   |   |    |   |   |  |   |
59  32  13   2---1   8  23  46
|   |   |            |  |   |
58  31  12--11--10---9  24  47
|   |                   |   |
57  30--29--28--27--26--25  48
|                           |
56--55--54--53--52--51--50--49
		

References

  • R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Same as A033951 except start at 0.
Sequences from spirals: A001107, A002939, A007742, A033951, A033952, A033953, A033954, A033989, A033990, A033991, this sequence, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, this sequence = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = 4*n^2 + 2*n.
a(n) = 2*A014105(n). - Omar E. Pol, May 21 2008
a(n) = floor((2*n + 1/2)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A007494(n) + A173511(n) = A007742(n) + n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n+a(n-1) - 2 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Aug 11 2011
a(n+1) = A045896(2*n+1). - Reinhard Zumkeller, Dec 12 2011
G.f.: 2*x*(3+x)/(1-x)^3. - Colin Barker, Jan 14 2012
From R. J. Mathar, Jan 15 2013: (Start)
Sum_{n>=1} 1/a(n) = 1 - log(2).
Sum_{n>=1} 1/a(n)^2 = 2*log(2) + Pi^2/6 - 3. (End)
a(n) = A118729(8*n+5). - Philippe Deléham, Mar 26 2013
a(n) = 1*A001477(n) + 2*A000217(n) + 3*A000290(n). - J. M. Bergot, Apr 23 2014
a(n) = 2 * A000217(2*n) = 2 * A014105(n). - Jon Perry, Oct 27 2014
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 + log(2)/2 - 1. - Amiram Eldar, Feb 22 2022
a(n) = A003154(n+1) - A056220(n+1). - Leo Tavares, Mar 31 2022
E.g.f.: 2*exp(x)*x*(3 + 2*x). - Stefano Spezia, Apr 24 2024
a(n) = A002939(-n) for all n in Z. - Charles Kusniec, Aug 12 2025

Extensions

Formula fixed by Reinhard Zumkeller, Apr 09 2010

A007742 a(n) = n*(4*n+1).

Original entry on oeis.org

0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives the numbers that fall on the positive y-axis. (See Example section.)
Central terms of the triangle in A126890. - Reinhard Zumkeller, Dec 30 2006
a(n)*Pi is the total length of 4 points circle center spiral after n rotations. The spiral length at each rotation (L(n)) is A004770. The spiral length ratio rounded down [floor(L(n)/L(1))] is A047497. See illustration in links. - Kival Ngaokrajang, Dec 27 2013
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n; {4, 4n}]. For n=1, this collapses to [2, {4}]. - Magus K. Chu, Sep 15 2022

Examples

			Part of the spiral:
.
  64--65--66--67--68
   |
  63  36--37--38--39--40--41--42
   |   |                       |
  62  35  16--17--18--19--20  43
   |   |   |               |   |
  61  34  15   4---5---6  21  44
   |   |   |   |       |   |   |
  60  33  14   3   0   7  22  45
   |   |   |   |   |   |   |   |
  59  32  13   2---1   8  23  46
   |   |   |           |   |   |
  58  31  12--11--10---9  24  47
   |   |                   |   |
  57  30--29--28--27--26--25  48
   |                           |
  56--55--54--53--52--51--50--49
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in A140090.
Cf. A081266.

Programs

  • Magma
    I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
  • Mathematica
    LinearRecurrence[{3,-3,1},{0,5,18},50] (* Vincenzo Librandi, Jan 29 2012 *)
    Table[n(4n+1),{n,0,50}] (* Harvey P. Dale, Aug 10 2017 *)
  • PARI
    a(n)=4*n^2+n
    

Formula

G.f.: x*(5+3*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A033991(-n) = A074378(2*n).
a(n) = floor((n + 1/4)^2). - Reinhard Zumkeller, Feb 20 2010
a(n) = A110654(n) + A173511(n) = A002943(n) - n. - Reinhard Zumkeller, Feb 20 2010
a(n) = 8*n + a(n-1) - 3. - Vincenzo Librandi, Nov 21 2010
Sum_{n>=1} 1/a(n) = Sum_{k>=0} (-1)^k*zeta(2+k)/4^(k+1) = 0.349762131... . - R. J. Mathar, Jul 10 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=18. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+4). - Philippe Deléham, Mar 26 2013
a(n) = A000217(3*n) - A000217(n). - Bruno Berselli, Sep 21 2016
E.g.f.: (4*x^2 + 5*x)*exp(x). - G. C. Greubel, Jul 17 2017
From Amiram Eldar, Jul 03 2020: (Start)
Sum_{n>=1} 1/a(n) = 4 - Pi/2 - 3*log(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/sqrt(2) + log(2) + sqrt(2)*log(1 + sqrt(2)) - 4. (End)
a(n) = A081266(n) - A000217(n). - Leo Tavares, Mar 25 2022

A033991 a(n) = n*(4*n-1).

Original entry on oeis.org

0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0

Views

Author

Keywords

Comments

Write 0,1,2,... in a clockwise spiral; sequence gives numbers on negative x axis. (See illustration in Example.)
This sequence is the number of expressions x generated for a given modulus n in finite arithmetic. For example, n=1 (modulus 1) generates 3 expressions: 0+0=0(mod 1), 0-0=0(mod 1), 0*0=0(mod 1). By subtracting n from 4n^2, we eliminate the counting of those expressions that would include division by zero, which would be, of course, undefined. - David Quentin Dauthier, Nov 04 2007
From Emeric Deutsch, Sep 21 2010: (Start)
a(n) is also the Wiener index of the windmill graph D(3,n).
The windmill graph D(m,n) is the graph obtained by taking n copies of the complete graph K_m with a vertex in common (i.e., a bouquet of n pieces of K_m graphs). The Wiener index of a connected graph is the sum of the distances between all unordered pairs of vertices in the graph.
Example: a(2)=14; indeed if the triangles are OAB and OCD, then, denoting distance by d, we have d(O,A)=d(O,B)=d(A,B)=d(O,C)=d(O,D)=d(C,D)=1 and d(A,C)=d(A,D)=d(B,C)=d(B,D)=2. The Wiener index of D(m,n) is (1/2)n(m-1)[(m-1)(2n-1)+1]. For the Wiener indices of D(4,n), D(5,n), and D(6,n) see A152743, A028994, and A180577, respectively. (End)
Even hexagonal numbers divided by 2. - Omar E. Pol, Aug 18 2011
For n > 0, a(n) equals the number of length 3*n binary words having exactly two 0's with the n first bits having at most one 0. For example a(2) = 14. Words are 010111, 011011, 011101, 011110, 100111, 101011, 101101, 101110, 110011, 110101, 110110, 111001, 111010, 111100. - Franck Maminirina Ramaharo, Mar 09 2018
For n >= 1, the continued fraction expansion of sqrt(a(n)) is [2n-1; {1, 2, 1, 4n-2}]. For n=1, this collapses to [1; {1, 2}]. - Magus K. Chu, Sep 06 2022

Examples

			Clockwise spiral (with sequence terms parenthesized) begins
   16--17--18--19
    |
   15   4---5---6
    |   |       |
  (14) (3) (0)  7
    |   |   |   |
   13   2---1   8
    |           |
   12--11--10---9
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.

Programs

Formula

a(n) = A007742(-n) = A074378(2n-1) = A014848(2n).
G.f.: x*(3+5*x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = A014635(n)/2. - Zerinvary Lajos, Jan 16 2007
From Zerinvary Lajos, Jun 12 2007: (Start)
a(n) = A000326(n) + A005476(n).
a(n) = A049452(n) - A001105(n). (End)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. - Harvey P. Dale, Oct 10 2011
a(n) = A118729(8n+2). - Philippe Deléham, Mar 26 2013
From Ilya Gutkovskiy, Dec 04 2016: (Start)
E.g.f.: x*(3 + 4*x)*exp(x).
Sum_{n>=1} 1/a(n) = 3*log(2) - Pi/2 = 0.50864521488... (End)
a(n) = Sum_{i=n..3n-1} i. - Wesley Ivan Hurt, Dec 04 2016
From Franck Maminirina Ramaharo, Mar 09 2018: (Start)
a(n) = binomial(2*n, 2) + 2*n^2.
a(n) = A054556(n+1) - 1. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi + log(3-2*sqrt(2)))/sqrt(2) - log(2). - Amiram Eldar, Mar 20 2022

Extensions

Two remarks combined into one by Emeric Deutsch, Oct 03 2010

A033954 Second 10-gonal (or decagonal) numbers: n*(4*n+3).

Original entry on oeis.org

0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945, 1072, 1207, 1350, 1501, 1660, 1827, 2002, 2185, 2376, 2575, 2782, 2997, 3220, 3451, 3690, 3937, 4192, 4455, 4726, 5005, 5292, 5587, 5890, 6201, 6520, 6847, 7182, 7525, 7876, 8235
Offset: 0

Views

Author

Keywords

Comments

Same as A033951 except start at 0. See example section.
Bisection of A074377. Also sequence found by reading the line from 0, in the direction 0, 22, ... and the line from 7, in the direction 7, 45, ..., in the square spiral whose vertices are the generalized 10-gonal numbers A074377. - Omar E. Pol, Jul 24 2012

Examples

			  36--37--38--39--40--41--42
   |                       |
  35  16--17--18--19--20  43
   |   |               |   |
  34  15   4---5---6  21  44
   |   |   |       |   |   |
  33  14   3   0===7==22==45==76=>
   |   |   |   |   |   |
  32  13   2---1   8  23
   |   |           |   |
  31  12--11--10---9  24
   |                   |
  30--29--28--27--26--25
		

References

  • S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.

Crossrefs

Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Second n-gonal numbers: A005449, A014105, A147875, A045944, A179986, this sequence, A062728, A135705.
Cf. A060544.

Programs

  • GAP
    List([0..50], n-> n*(4*n+3)) # G. C. Greubel, May 24 2019
  • Magma
    [n*(4*n+3): n in [0..50]]; // G. C. Greubel, May 24 2019
    
  • Mathematica
    Table[n(4n+3),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,22},50] (* Harvey P. Dale, May 06 2018 *)
  • PARI
    a(n)=4*n^2+3*n
    
  • Sage
    [n*(4*n+3) for n in (0..50)] # G. C. Greubel, May 24 2019
    

Formula

a(n) = A001107(-n) = A074377(2*n).
G.f.: x*(7+x)/(1-x)^3. - Michael Somos, Mar 03 2003
a(n) = a(n-1) + 8*n - 1 with a(0)=0. - Vincenzo Librandi, Jul 20 2010
For n>0, Sum_{j=0..n} (a(n) + j)^4 + (4*A000217(n))^3 = Sum_{j=n+1..2n} (a(n) + j)^4; see also A045944. - Charlie Marion, Dec 08 2007, edited by Michel Marcus, Mar 14 2014
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) with a(0) = 0, a(1) = 7, a(2) = 22. - Philippe Deléham, Mar 26 2013
a(n) = A118729(8n+6). - Philippe Deléham, Mar 26 2013
a(n) = A002943(n) + n = A007742(n) + 2n = A016742(n) + 3n = A033991(n) + 4n = A002939(n) + 5n = A001107(n) + 6n = A033996(n) - n. - Philippe Deléham, Mar 26 2013
Sum_{n>=1} 1/a(n) = 4/9 + Pi/6 - log(2) = 0.2748960394827980081... . - Vaclav Kotesovec, Apr 27 2016
E.g.f.: exp(x)*x*(7 + 4*x). - Stefano Spezia, Jun 08 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(3*sqrt(2)) + log(2)/3 - 4/9 - sqrt(2)*arcsinh(1)/3. - Amiram Eldar, Nov 28 2021
For n>0, (a(n)^2 + n)/(a(n) + n) = (4*n + 1)^2/4, a ratio of two squares. - Rick L. Shepherd, Feb 23 2022
a(n) = A060544(n+1) - A000217(n+1). - Leo Tavares, Mar 31 2022

A131242 Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0

Views

Author

Hieronymus Fischer, Jun 21 2007

Keywords

Comments

Complementary with A130488 regarding triangular numbers, in that A130488(n)+10*a(n)=n(n+1)/2=A000217(n).

Examples

			As square array :
    0,   0,   0,   0,   0,   0,   0,   0,   0,    0
    1,   2,   3,   4,   5,   6,   7,   8,   9,   10
   12,  14,  16,  18,  20,  22,  24,  26,  28,   30
   33,  36,  39,  42,  45,  48,  51,  54,  57,   60
   64,  68,  72,  76,  80,  84,  88,  92,  96,  100
  105, 110, 115, 120, 125, 130, 135, 140, 145,  150
  156, 162, 168, 174, 180, 186, 192, 198, 204,  210
... - _Philippe Deléham_, Mar 27 2013
		

Crossrefs

Programs

  • Mathematica
    Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
    Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
  • PARI
    for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
    
  • PARI
    a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016

Formula

a(n) = (1/2)*floor(n/10)*(2n-8-10*floor(n/10)).
a(n) = A059995(n)*(2n-8-10*A059995(n))/2.
a(n) = (1/2)*A059995(n)*(n-8+A010879(n)).
a(n) = (n-A010879(n))*(n+A010879(n)-8)/20.
G.f.: x^10/((1-x^10)(1-x)^2).
From Philippe Deléham, Mar 27 2013: (Start)
a(10n) = A051624(n).
a(10n+1) = A135706(n).
a(10n+2) = A147874(n+1).
a(10n+3) = 2*A005476(n).
a(10n+4) = A033429(n).
a(10n+5) = A202803(n).
a(10n+6) = A168668(n).
a(10n+7) = 2*A147875(n).
a(10n+8) = A135705(n).
a(10n+9) = A124080(n). (End)
a(n) = A008728(n-10) for n>= 10. - Georg Fischer, Nov 03 2018

A174738 Partial sums of floor(n/7).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0

Views

Author

Mircea Merca, Nov 30 2010

Keywords

Comments

Apart from the initial zeros, the same as A011867.

Examples

			a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
		

Crossrefs

Programs

Formula

a(n) = round(n*(n-5)/14).
a(n) = floor((n-2)*(n-3)/14).
a(n) = ceiling((n+1)*(n-6)/14).
a(n) = a(n-7) + n - 6, n > 6.
a(n) = +2*a(n-1) - a(n-2) + a(n-7) - 2*a(n-8) + a(n-9). - R. J. Mathar, Nov 30 2010
G.f.: x^7/( (1 + x + x^2 + x^3 + x^4 + x^5 + x^6)*(1-x)^3 ). - R. J. Mathar, Nov 30 2010
a(7n) = A001106(n), a(7n+1) = A218471(n), a(7n+2) = A022264(n), a(7n+3) = A022265(n), a(7n+4) = A186029(n), a(7n+5) = A179986(n), a(7n+6) = A024966(n). - Philippe Deléham, Mar 26 2013

A218470 Partial sums of floor(n/9).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0

Views

Author

Philippe Deléham, Mar 26 2013

Keywords

Comments

Apart from the initial zeros, the same as A008727.

Examples

			As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
		

Crossrefs

Cf. similar sequences: A118729, A174109, A174738.

Programs

Formula

a(9n) = A051682(n).
a(9n+1) = A062708(n).
a(9n+2) = A062741(n).
a(9n+3) = A022266(n).
a(9n+4) = A022267(n).
a(9n+5) = A081266(n).
a(9n+6) = A062725(n).
a(9n+7) = A062728(n).
a(9n+8) = A027468(n).
G.f.: x^9/((1-x)^2*(1-x^9)). - Bruno Berselli, Mar 27 2013
Showing 1-10 of 13 results. Next