A016742
Even squares: a(n) = (2*n)^2.
Original entry on oeis.org
0, 4, 16, 36, 64, 100, 144, 196, 256, 324, 400, 484, 576, 676, 784, 900, 1024, 1156, 1296, 1444, 1600, 1764, 1936, 2116, 2304, 2500, 2704, 2916, 3136, 3364, 3600, 3844, 4096, 4356, 4624, 4900, 5184, 5476, 5776, 6084, 6400, 6724, 7056, 7396, 7744, 8100, 8464
Offset: 0
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Seberry, Jennifer and Yamada, Mieko; Hadamard matrices, sequences and block designs, in Dinitz and Stinson, eds., Contemporary design theory, pp. 431-560, Wiley-Intersci. Ser. Discrete Math. Optim., Wiley, New York, 1992.
- W. D. Wallis, Anne Penfold Street and Jennifer Seberry Wallis, Combinatorics: Room squares, sum-free sets, Hadamard matrices, Lecture Notes in Mathematics, Vol. 292, Springer-Verlag, Berlin-New York, 1972. iv+508 pp.
- Vincenzo Librandi, Table of n, a(n) for n = 0..900
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974.
- Leo Tavares, Illustration: X Squares
- Various, Electron Configuration (Discussion in Physics Forums).
- Eric Weisstein's World of Mathematics, Graph Cycle.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Molecular Topological Index.
- Wikipedia, Aufbau principle.
- Index entries for sequences related to Hadamard matrices
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A000290,
A001105,
A001539,
A016754,
A016802,
A016814,
A016826,
A016838,
A007742,
A033991,
A245058.
-
List([0..100], n -> (2*n)^2); # Muniru A Asiru, Jan 28 2018
-
a016742 = (* 4) . (^ 2)
a016742_list = 0 : map (subtract 4) (zipWith (+) a016742_list [8, 16 ..])
-- Reinhard Zumkeller, Jun 28 2015, Apr 20 2015
-
[(2*n)^2: n in [0..50]]; // Vincenzo Librandi, Apr 26 2011
-
seq((2*n)^2, n=0..100); # Muniru A Asiru, Jan 28 2018
-
Table[(2n)^2, {n, 0, 46}] (* Alonso del Arte, Apr 26 2011 *)
-
makelist((2*n)^2,n,0,20); /* Martin Ettl, Jan 22 2013 */
-
a(n)=4*n^2 \\ Charles R Greathouse IV, Jul 28 2015
More terms from Sabir Abdus-Samee (sabdulsamee(AT)prepaidlegal.com), Mar 13 2006
A001107
10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).
Original entry on oeis.org
0, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, 540, 637, 742, 855, 976, 1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751, 4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326
Offset: 0
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along the negative y-axis, as seen in the example below:
99 64--65--66--67--68--69--70--71--72
| | |
98 63 36--37--38--39--40--41--42 73
| | | | |
97 62 35 16--17--18--19--20 43 74
| | | | | | |
96 61 34 15 4---5---6 21 44 75
| | | | | | | | |
95 60 33 14 3 *0* 7 22 45 76
| | | | | | | | | |
94 59 32 13 2--*1* 8 23 46 77
| | | | | | | |
93 58 31 12--11-*10*--9 24 47 78
| | | | | |
92 57 30--29--28-*27*-26--25 48 79
| | | |
91 56--55--54--53-*52*-51--50--49 80
| |
90--89--88--87--86-*85*-84--83--82--81
[Edited by _Jon E. Schoenfield_, Jan 02 2017]
- Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
- Bruce C. Berndt, Ramanujan's Notebooks, Part II, Springer; see p. 23.
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, The Bateman-Horn Conjecture: Heuristics, History, and Applications, arXiv:1807.08899 [math.NT], 2018-2019. See 6.6.3 p. 33.
- Emilio Apricena, A version of the Ulam spiral.
- Yin Choi Cheng, Greedy Sidon sets for linear forms, J. Num. Theor. (2024).
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 344.
- Craig Knecht, Corona of the H0 hexagon with a T(n) triangle.
- Minh Nguyen, 2-adic Valuations of Square Spiral Sequences, Honors Thesis, Univ. of Southern Mississippi (2021).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Leo Tavares, Illustration: Conjoined Hexagon/Square Pairs
- Eric Weisstein's World of Mathematics, Barbell Graph.
- Eric Weisstein's World of Mathematics, Decagonal Number.
- Eric Weisstein's World of Mathematics, Graph Path.
- Eric Weisstein's World of Mathematics, Sunlet Graph.
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Sequences from spirals:
A001107 (this),
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991,
A002943,
A033996,
A033988.
-
[4*n^2-3*n : n in [0..50] ]; // Wesley Ivan Hurt, Jun 05 2014
-
A001107:=-(1+7*z)/(z-1)**3; # Simon Plouffe in his 1992 dissertation
-
LinearRecurrence[{3, -3, 1}, {0, 1, 10}, 60] (* Harvey P. Dale, May 08 2012 *)
Table[PolygonalNumber[RegularPolygon[10], n], {n, 0, 46}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
Table[4 n^2 - 3 n, {n, 0, 49}] (* Alonso del Arte, Jan 24 2017 *)
PolygonalNumber[10, Range[0, 20]] (* Eric W. Weisstein, Sep 07 2017 *)
LinearRecurrence[{3, -3, 1}, {1, 10, 27}, {0, 20}] (* Eric W. Weisstein, Sep 07 2017 *)
-
a(n)=4*n^2-3*n
-
a=lambda n: 4*n**2-3*n # Indranil Ghosh, Jan 01 2017
def aList(): # Intended to compute the initial segment of the sequence, not isolated terms.
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 8, y + 8
A001107 = aList()
print([next(A001107) for i in range(49)]) # Peter Luschny, Aug 04 2019
A002939
a(n) = 2*n*(2*n-1).
Original entry on oeis.org
0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 0
G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ...
On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below:
.
99 64--65--66--67--68--69--70--71--72
| | |
98 63 36--37--38--39--40--41--42 73
| | | | |
97 62 35 16--17--18--19--20 43 74
| | | | | | |
96 61 34 15 4---5---6 21 44 75
| | | | | | | | |
95 60 33 14 3 *0* 7 22 45 76
| | | | | | | | | |
94 59 32 13 *2*--1 8 23 46 77
| | | | | | | |
93 58 31 *12*-11--10---9 24 47 78
| | | | | |
92 57 *30*-29--28--27--26--25 48 79
| | | |
91 *56*-55--54--53--52--51--50--49 80
| |
*90*-89--88--87--86--85--84--83--82--81
.
[Edited by _Jon E. Schoenfield_, Jan 01 2017]
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- H-Y. Ching, R. Florez, and A. Mukherjee, Families of Integral Cographs within a Triangular Arrays, arXiv:2009.02770 [math.CO], 2020.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
- Eric Weisstein's World of Mathematics, Kirchhoff Index
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf. numbers of the form n*(n*k-k+4)/2 listed in
A226488 (this sequence is the case k=8). -
Bruno Berselli, Jun 10 2013
-
a002939 n = (* 2) . a000384
a002939_list = scanl1 (+) a017089_list
-- Reinhard Zumkeller, Jun 08 2015
-
[2*n*(2*n-1): n in [0..50]]; // Vincenzo Librandi, Jul 26 2011
-
A002939:=n->2*n*(2*n-1): seq(A002939(n), n=0..100); # Wesley Ivan Hurt, Jan 28 2017
-
Table[2*n*(2*n-1), {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *)
2#(2#-1)&/@Range[0,50] (* Harvey P. Dale, Mar 06 2011 *)
-
a(n)=2*binomial(2*n,2) \\ Charles R Greathouse IV, Jul 25 2011
-
a=lambda n: 2*n*(2*n-1) # Indranil Ghosh, Jan 01 2017
A002943
a(n) = 2*n*(2*n+1).
Original entry on oeis.org
0, 6, 20, 42, 72, 110, 156, 210, 272, 342, 420, 506, 600, 702, 812, 930, 1056, 1190, 1332, 1482, 1640, 1806, 1980, 2162, 2352, 2550, 2756, 2970, 3192, 3422, 3660, 3906, 4160, 4422, 4692, 4970, 5256, 5550, 5852, 6162, 6480, 6806, 7140, 7482, 7832, 8190, 8556, 8930
Offset: 0
64--65--66--67--68--69--70--71--72
|
63 36--37--38--39--40--41--42
| | |
62 35 16--17--18--19--20 43
| | | | |
61 34 15 4---5---6 21 44
| | | | | | |
60 33 14 3 0 7 22 45
| | | | | | | |
59 32 13 2---1 8 23 46
| | | | | |
58 31 12--11--10---9 24 47
| | | |
57 30--29--28--27--26--25 48
| |
56--55--54--53--52--51--50--49
- R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Amelia Carolina Sparavigna, The groupoids of Mersenne, Fermat, Cullen, Woodall and other Numbers and their representations by means of integer sequences, Politecnico di Torino, Italy (2019), [math.NT].
- Leo Tavares, Illustration: Twin Diamond Stars.
- Eric Weisstein's World of Mathematics, Crown Graph.
- Eric Weisstein's World of Mathematics, Edge Count.
- Eric Weisstein's World of Mathematics, King Graph.
- Eric Weisstein's World of Mathematics, Queen Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Cf.
A001477,
A007395,
A007494,
A007742,
A014105,
A016813,
A033954,
A045896,
A046092,
A054000,
A118729,
A173511.
Sequences from spirals:
A001107,
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991, this sequence,
A033996,
A033988.
-
a002943 n = 2 * n * (2 * n + 1) -- Reinhard Zumkeller, Jan 12 2014
-
[ 4*n^2+2*n: n in [0..50]]; // Vincenzo Librandi, Nov 25 2012
-
A002943 := proc(n)
2*n*(2*n+1) ;
end proc: # R. J. Mathar, Jun 28 2013
-
LinearRecurrence[{3, -3, 1}, {0, 6, 20}, 40] (* Harvey P. Dale, Aug 11 2011 *)
Table[2 n (2 n + 1), {n, 0, 40}] (* Harvey P. Dale, Aug 11 2011 *)
-
a(n)=2*n*(2*n+1) \\ Charles R Greathouse IV, Nov 20 2012
A007742
a(n) = n*(4*n+1).
Original entry on oeis.org
0, 5, 18, 39, 68, 105, 150, 203, 264, 333, 410, 495, 588, 689, 798, 915, 1040, 1173, 1314, 1463, 1620, 1785, 1958, 2139, 2328, 2525, 2730, 2943, 3164, 3393, 3630, 3875, 4128, 4389, 4658, 4935, 5220, 5513, 5814, 6123, 6440, 6765, 7098, 7439, 7788, 8145
Offset: 0
Part of the spiral:
.
64--65--66--67--68
|
63 36--37--38--39--40--41--42
| | |
62 35 16--17--18--19--20 43
| | | | |
61 34 15 4---5---6 21 44
| | | | | | |
60 33 14 3 0 7 22 45
| | | | | | | |
59 32 13 2---1 8 23 46
| | | | | |
58 31 12--11--10---9 24 47
| | | |
57 30--29--28--27--26--25 48
| |
56--55--54--53--52--51--50--49
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Emilio Apricena, A version of the Ulam spiral
- Robert FERREOL, Illustration by pentagons
- Kival Ngaokrajang, Illustration of 4 points circle center spiral
- Leo Tavares, Illustration: Triangular Layers
- G. Thimm, Emails to N. J. A. Sloane, Sep. 1994
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Sequences from spirals:
A001107,
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991,
A002943,
A033996,
A033988.
Cf. index to sequences with numbers of the form n*(d*n+10-d)/2 in
A140090.
-
I:=[0, 5, 18]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..50]]; // Vincenzo Librandi, Jan 29 2012
-
LinearRecurrence[{3,-3,1},{0,5,18},50] (* Vincenzo Librandi, Jan 29 2012 *)
Table[n(4n+1),{n,0,50}] (* Harvey P. Dale, Aug 10 2017 *)
-
a(n)=4*n^2+n
A033991
a(n) = n*(4*n-1).
Original entry on oeis.org
0, 3, 14, 33, 60, 95, 138, 189, 248, 315, 390, 473, 564, 663, 770, 885, 1008, 1139, 1278, 1425, 1580, 1743, 1914, 2093, 2280, 2475, 2678, 2889, 3108, 3335, 3570, 3813, 4064, 4323, 4590, 4865, 5148, 5439, 5738, 6045, 6360, 6683, 7014, 7353, 7700, 8055, 8418
Offset: 0
Clockwise spiral (with sequence terms parenthesized) begins
16--17--18--19
|
15 4---5---6
| | |
(14) (3) (0) 7
| | | |
13 2---1 8
| |
12--11--10---9
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Cf.
A074378,
A014848,
A152743,
A028994,
A000326,
A001105,
A005476,
A014635,
A016742,
A049452,
A118729.
-
[seq(binomial(4*n, 2)/2, n=0..45)]; # Zerinvary Lajos, Jan 16 2007
-
Table[n*(4*n - 1), {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jul 06 2011 *)
LinearRecurrence[{3,-3,1},{0,3,14},50] (* Harvey P. Dale, Oct 10 2011 *)
-
a(n)=4*n^2-n;
A033954
Second 10-gonal (or decagonal) numbers: n*(4*n+3).
Original entry on oeis.org
0, 7, 22, 45, 76, 115, 162, 217, 280, 351, 430, 517, 612, 715, 826, 945, 1072, 1207, 1350, 1501, 1660, 1827, 2002, 2185, 2376, 2575, 2782, 2997, 3220, 3451, 3690, 3937, 4192, 4455, 4726, 5005, 5292, 5587, 5890, 6201, 6520, 6847, 7182, 7525, 7876, 8235
Offset: 0
36--37--38--39--40--41--42
| |
35 16--17--18--19--20 43
| | | |
34 15 4---5---6 21 44
| | | | | |
33 14 3 0===7==22==45==76=>
| | | | | |
32 13 2---1 8 23
| | | |
31 12--11--10---9 24
| |
30--29--28--27--26--25
- S. M. Ellerstein, The square spiral, J. Recreational Mathematics 29 (#3, 1998) 188; 30 (#4, 1999-2000), 246-250.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Sequences from spirals:
A001107,
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991,
A002943,
A033996,
A033988.
-
List([0..50], n-> n*(4*n+3)) # G. C. Greubel, May 24 2019
-
[n*(4*n+3): n in [0..50]]; // G. C. Greubel, May 24 2019
-
Table[n(4n+3),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,7,22},50] (* Harvey P. Dale, May 06 2018 *)
-
a(n)=4*n^2+3*n
-
[n*(4*n+3) for n in (0..50)] # G. C. Greubel, May 24 2019
A131242
Partial sums of A059995: a(n) = sum_{k=0..n} floor(k/10).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150, 156, 162, 168, 174, 180, 186, 192, 198
Offset: 0
As square array :
0, 0, 0, 0, 0, 0, 0, 0, 0, 0
1, 2, 3, 4, 5, 6, 7, 8, 9, 10
12, 14, 16, 18, 20, 22, 24, 26, 28, 30
33, 36, 39, 42, 45, 48, 51, 54, 57, 60
64, 68, 72, 76, 80, 84, 88, 92, 96, 100
105, 110, 115, 120, 125, 130, 135, 140, 145, 150
156, 162, 168, 174, 180, 186, 192, 198, 204, 210
... - _Philippe Deléham_, Mar 27 2013
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,0,1,-2,1).
Cf.
A008728,
A059995,
A010879,
A002266,
A130488,
A000217,
A002620,
A130518,
A130519,
A130520,
A174709,
A174738,
A118729,
A218470.
-
Table[(1/2)*Floor[n/10]*(2*n - 8 - 10*Floor[n/10]), {n,0,50}] (* G. C. Greubel, Dec 13 2016 *)
Accumulate[Table[FromDigits[Most[IntegerDigits[n]]],{n,0,110}]] (* or *) LinearRecurrence[{2,-1,0,0,0,0,0,0,0,1,-2,1},{0,0,0,0,0,0,0,0,0,0,1,2},120] (* Harvey P. Dale, Apr 06 2017 *)
-
for(n=0,50, print1((1/2)*floor(n/10)*(2n-8-10*floor(n/10)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\10); k*(n-5*k-4) \\ Charles R Greathouse IV, Dec 13 2016
A174738
Partial sums of floor(n/7).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 24, 27, 30, 33, 36, 39, 42, 46, 50, 54, 58, 62, 66, 70, 75, 80, 85, 90, 95, 100, 105, 111, 117, 123, 129, 135, 141, 147, 154, 161, 168, 175, 182, 189, 196, 204, 212, 220, 228, 236
Offset: 0
a(9) = floor(0/7) + floor(1/7) + floor(2/7) + floor(3/7) + floor(4/7) + floor(5/7) + floor(6/7) + floor(7/7) + floor(8/7) + floor(9/7) = 3.
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,1,-2,1).
-
List([0..60], n-> Int((n-2)*(n-3)/14)); # G. C. Greubel, Aug 31 2019
-
[Round(n*(n-5)/14): n in [0..60]]; // Vincenzo Librandi, Jun 22 2011
-
A174738 := proc(n) round(n*(n-5)/14) ; end proc:
seq(A174738(n),n=0..30) ;
-
Table[Floor[(n - 2)*(n - 3)/14], {n,0,60}] (* G. C. Greubel, Dec 13 2016 *)
-
a(n)=(n-2)*(n-3)\14 \\ Charles R Greathouse IV, Sep 24 2015
-
[floor((n-2)*(n-3)/14) for n in (0..60)] # G. C. Greubel, Aug 31 2019
A218470
Partial sums of floor(n/9).
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 141, 147, 153, 159, 165, 171, 177, 183, 189, 196, 203, 210, 217, 224
Offset: 0
As square array:
..0....0....0....0....0....0....0....0....0....
..1....2....3....4....5....6....7....8....9....
.11...13...15...17...19...21...23...25...27....
.30...33...36...39...42...45...48...51...54....
.58...62...66...70...74...78...82...86...90....
.95..100..105..110..115..120..125..130..135....
141..147..153..159..165..171..177..183..189....
196..203..210..217..224..231..238..245..252....
...
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,-1,0,0,0,0,0,0,1,-2,1).
-
[&+[Floor(k/9): k in [0..n]]: n in [0..70]]; // Bruno Berselli, Mar 27 2013
-
Accumulate[Floor[Range[0, 100]/9]] (* Jean-François Alcover, Mar 27 2013 *)
-
for(n=0,50, print1(sum(k=0,n, floor(k/9)), ", ")) \\ G. C. Greubel, Dec 13 2016
-
a(n)=my(k=n\9); k*(9*k-7)/2 + k*(n-9*k) \\ Charles R Greathouse IV, Dec 13 2016
Showing 1-10 of 13 results.
Comments