A108368 Coefficients of x/(1-3*x-3*x^2-x^3).
0, 1, 3, 12, 46, 177, 681, 2620, 10080, 38781, 149203, 574032, 2208486, 8496757, 32689761, 125768040, 483870160, 1861604361, 7162191603, 27555258052, 106013953326, 407869825737, 1569206595241, 6037243216260, 23227219260240, 89362594024741, 343806683071203
Offset: 0
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 562.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..1710
- Sela Fried, Even-up words and their variants, arXiv:2505.14196 [math.CO], 2025. See p. 4.
- Index entries for linear recurrences with constant coefficients, signature (3,3,1).
Programs
-
Mathematica
CoefficientList[Series[x/(1-3*x-3*x^2-x^3),{x,0,40}],x] (* or *) LinearRecurrence[{3,3,1},{0,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 31 2012 *)
-
PARI
a(n)=if(n>=0, polcoeff(x/(1-3*x-3*x^2-x^3)+x*O(x^n),n), n=-1-n; polcoeff(x/(1+3*x+3*x^2-x^3)+x*O(x^n),n))
Formula
x=a(n), z=a(-n), y=a(n)+a(n-1), t=a(-n)+a(-n-1) is a solution to 2(x^3+z^3)=y^3+t^3.
G.f.: x/(1-3*x-3*x^2-x^3).
a(n) = 3*a(n-1)+3*a(n-2)+a(n-3).
a(-1-n) = A108369(n).
a(n+1) = Sum_{k>=0} (1/2)^(k+1) * binomial(3*k,n). - Seiichi Manyama, Aug 03 2024
Comments