cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).
Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
Guide to p-INVERT sequences using p(S) = 1 - S - S^2:
t(A000012) = t(1,1,1,1,1,1,1,...) = A001906
t(A000290) = t(1,4,9,16,25,36,...) = A289779
t(A000027) = t(1,2,3,4,5,6,7,8,...) = A289780
t(A000045) = t(1,2,3,5,8,13,21,...) = A289781
t(A000032) = t(2,1,3,4,7,11,14,...) = A289782
t(A000244) = t(1,3,9,27,81,243,...) = A289783
t(A000302) = t(1,4,16,64,256,...) = A289784
t(A000351) = t(1,5,25,125,625,...) = A289785
t(A005408) = t(1,3,5,7,9,11,13,...) = A289786
t(A005843) = t(2,4,6,8,10,12,14,...) = A289787
t(A016777) = t(1,4,7,10,13,16,...) = A289789
t(A016789) = t(2,5,8,11,14,17,...) = A289790
t(A008585) = t(3,6,9,12,15,18,...) = A289795
t(A000217) = t(1,3,6,10,15,21,...) = A289797
t(A000225) = t(1,3,7,15,31,63,...) = A289798
t(A000578) = t(1,8,27,64,625,...) = A289799
t(A000984) = t(1,2,6,20,70,252,...) = A289800
t(A000292) = t(1,4,10,20,35,56,...) = A289801
t(A002620) = t(1,2,4,6,9,12,16,...) = A289802
t(A001906) = t(1,3,8,21,55,144,...) = A289803
t(A001519) = t(1,1,2,5,13,34,...) = A289804
t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805
t(A008619) = t(1,1,2,2,3,3,4,4,...) = A289806
t(A080513) = t(1,2,2,3,3,4,4,5,...) = A289807
t(A133622) = t(1,2,1,3,1,4,1,5,...) = A289809
t(A000108) = t(1,1,2,5,14,42,...) = A081696
t(A081696) = t(1,1,3,9,29,97,...) = A289810
t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843
t(A175676) = t(1,0,0,2,0,0,3,0,...) = A289844
t(A079977) = t(1,0,1,0,2,0,3,...) = A289845
t(A059841) = t(1,0,1,0,1,0,1,...) = A289846
t(A000040) = t(2,3,5,7,11,13,...) = A289847
t(A008578) = t(1,2,3,5,7,11,13,...) = A289828
t(A000142) = t(1!, 2!, 3!, 4!, ...) = A289924
t(A000201) = t(1,3,4,6,8,9,11,...) = A289925
t(A001950) = t(2,5,7,10,13,15,...) = A289926
t(A014217) = t(1,2,4,6,11,17,29,...) = A289927
t(A000045*) = t(0,1,1,2,3,5,...) = A289975 (* indicates prepended 0's)
t(A000045*) = t(0,0,1,1,2,3,5,...) = A289976
t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977
t(A290990*) = t(0,1,2,3,4,5,...) = A290990
t(A290990*) = t(0,0,1,2,3,4,5,...) = A290991
t(A290990*) = t(0,0,01,2,3,4,5,...) = A290992

Examples

			Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
		

Crossrefs

Cf. A000027.

Programs

  • GAP
    P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).

A290890 p-INVERT of the positive integers, where p(S) = 1 - S^2.

Original entry on oeis.org

0, 1, 4, 11, 28, 72, 188, 493, 1292, 3383, 8856, 23184, 60696, 158905, 416020, 1089155, 2851444, 7465176, 19544084, 51167077, 133957148, 350704367, 918155952, 2403763488, 6293134512, 16475640049, 43133785636, 112925716859, 295643364940, 774004377960
Offset: 0

Views

Author

Clark Kimberling, Aug 15 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
Note that in A290890, s = (1,2,3,4,...); i.e., A000027(n+1) for n>=0, whereas in A290990, s = (0,1,2,3,4,...); i.e., A000027(n) for n>=0.
Guide to p-INVERT sequences using s = (1,2,3,4,5,...) = A000027:
p(S) t(1,2,3,4,5,...)
1 - S A001906
1 - S^2 A290890; see A113067 for signed version
1 - S^3 A290891
1 - S^4 A290892
1 - S^5 A290893
1 - S^6 A290894
1 - S^7 A290895
1 - S^8 A290896
1 - S - S^2 A289780
1 - S - S^3 A290897
1 - S - S^4 A290898
1 - S^2 - S^4 A290899
1 - S^2 - S^3 A290900
1 - S^3 - S^4 A290901
1 - 2S A052530; (1/2)*A052530 = A001353
1 - 3S A290902; (1/3)*A290902 = A004254
1 - 4S A003319; (1/4)*A003319 = A001109
1 - 5S A290903; (1/5)*A290903 = A004187
1 - 2*S^2 A290904; (1/2)*A290904 = A290905
1 - 3*S^2 A290906; (1/3)*A290906 = A290907
1 - 4*S^2 A290908; (1/4)*A290908 = A099486
1 - 5*S^2 A290909; (1/5)*A290909 = A290910
1 - 6*S^2 A290911; (1/6)*A290911 = A290912
1 - 7*S^2 A290913; (1/7)*A290913 = A290914
1 - 8*S^2 A290915; (1/8)*A290915 = A290916
(1 - S)^2 A290917
(1 - S)^3 A290918
(1 - S)^4 A290919
(1 - S)^5 A290920
(1 - S)^6 A290921
1 - S - 2*S^2 A290922
1 - 2*S - 2*S^2 A290923; (1/2)*A290923 = A290924
1 - 3*S - 2*S^2 A290925
(1 - S^2)^2 A290926
(1 - S^2)^3 A290927
(1 - S^3)^2 A290928
(1 - S)(1 - S^2) A290929
(1 - S^2)(1 - S^4) A290930
1 - 3 S + S^2 A291025
1 - 4 S + S^2 A291026
1 - 5 S + S^2 A291027
1 - 6 S + S^2 A291028
1 - S - S^2 - S^3 A291029
1 - S - S^2 - S^3 - S^4 A201030
1 - 3 S + 2 S^3 A291031
1 - S - S^2 - S^3 + S^4 A291032
1 - 6 S A291033
1 - 7 S A291034
1 - 8 S A291181
1 - 3 S + 2 S^3 A291031
1 - 3 S + 2 S^2 A291182
1 - 4 S + 2 S^3 A291183
1 - 4 S + 3 S^3 A291184

Examples

			(See the examples at A289780.)
		

Crossrefs

Cf. A000027, A113067, A289780, A113067 (signed version of same sequence).

Programs

  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A290890 *)

Formula

G.f.: x/(1 - 4 x + 5 x^2 - 4 x^3 + x^4).
a(n) = 4*a(n-1) - 5*a(n-2) + 4*a(n-3) - a(n-4).

A291000 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - S - S^2 - S^3.

Original entry on oeis.org

1, 3, 9, 26, 74, 210, 596, 1692, 4804, 13640, 38728, 109960, 312208, 886448, 2516880, 7146144, 20289952, 57608992, 163568448, 464417728, 1318615104, 3743926400, 10630080640, 30181847168, 85694918912, 243312448256, 690833811712, 1961475291648, 5569190816256
Offset: 0

Views

Author

Clark Kimberling, Aug 22 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2),...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
In the following guide to p-INVERT sequences using s = (1,1,1,1,1,...) = A000012, in some cases t(1,1,1,1,1,...) is a shifted version of the cited sequence:
p(S) t(1,1,1,1,1,...)
1 - S A000079
1 - S^2 A000079
1 - S^3 A024495
1 - S^4 A000749
1 - S^5 A139761
1 - S^6 A290993
1 - S^7 A290994
1 - S^8 A290995
1 - S - S^2 A001906
1 - S - S^3 A116703
1 - S - S^4 A290996
1 - S^3 - S^6 A290997
1 - S^2 - S^3 A095263
1 - S^3 - S^4 A290998
1 - 2 S^2 A052542
1 - 3 S^2 A002605
1 - 4 S^2 A015518
1 - 5 S^2 A163305
1 - 6 S^2 A290999
1 - 7 S^2 A291008
1 - 8 S^2 A291001
(1 - S)^2 A045623
(1 - S)^3 A058396
(1 - S)^4 A062109
(1 - S)^5 A169792
(1 - S)^6 A169793
(1 - S^2)^2 A024007
1 - 2 S - 2 S^2 A052530
1 - 3 S - 2 S^2 A060801
(1 - S)(1 - 2 S) A053581
(1 - 2 S)(1 - 3 S) A291002
(1 - S)(1 - 2 S)(1 - 3 S)(1 - 4 S) A291003
(1 - 2 S)^2 A120926
(1 - 3 S)^2 A291004
1 + S - S^2 A000045 (Fibonacci numbers starting with -1)
1 - S - S^2 - S^3 A291000
1 - S - S^2 - S^3 - S^4 A291006
1 - S - S^2 - S^3 - S^4 - S^5 A291007
1 - S^2 - S^4 A290990
(1 - S)(1 - 3 S) A291009
(1 - S)(1 - 2 S)(1 - 3 S) A291010
(1 - S)^2 (1 - 2 S) A291011
(1 - S^2)(1 - 2 S) A291012
(1 - S^2)^3 A291013
(1 - S^3)^2 A291014
1 - S - S^2 + S^3 A045891
1 - 2 S - S^2 + S^3 A291015
1 - 3 S + S^2 A136775
1 - 4 S + S^2 A291016
1 - 5 S + S^2 A291017
1 - 6 S + S^2 A291018
1 - S - S^2 - S^3 + S^4 A291019
1 - S - S^2 - S^3 - S^4 + S^5 A291020
1 - S - S^2 - S^3 + S^4 + S^5 A291021
1 - S - 2 S^2 + 2 S^3 A175658
1 - 3 S^2 + 2 S^3 A291023
(1 - 2 S^2)^2 A291024
(1 - S^3)^3 A291143
(1 - S - S^2)^2 A209917

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(1 - x); p = 1 - s - s^2 - s^3;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1]  (* A000012 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A291000 *)

Formula

G.f.: (-1 + x - x^2)/(-1 + 4 x - 4 x^2 + 2 x^3).
a(n) = 4*a(n-1) - 4*a(n-2) + 2*a(n-3) for n >= 4.

A290991 p-INVERT of (0,0,1,2,3,4,5,...), the nonnegative integers A000027 preceded by one zero, where p(S) = 1 - S - S^2.

Original entry on oeis.org

0, 0, 1, 2, 3, 6, 13, 26, 50, 96, 184, 351, 669, 1278, 2447, 4692, 9004, 17285, 33182, 63687, 122208, 234461, 449774, 862776, 1655010, 3174766, 6090231, 11683285, 22413104, 42997349, 82486280, 158241688, 303570021, 582365698, 1117202719, 2143225358
Offset: 0

Views

Author

Clark Kimberling, Aug 21 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x^3/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,1,2,3,4,5,... *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290991 *)
  • PARI
    concat(vector(2), Vec(x^2*(1 - 2*x + x^2 + x^3) / (1 - 4*x + 6*x^2 - 5*x^3 + 3*x^4 - x^5 - x^6) + O(x^40))) \\ Colin Barker, Aug 24 2017

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 3*a(n-4) + a(n-5) + a(n-6).
G.f.: x^2*(1 - 2*x + x^2 + x^3) / (1 - 4*x + 6*x^2 - 5*x^3 + 3*x^4 - x^5 - x^6). - Colin Barker, Aug 24 2017

A290992 p-INVERT of (0,0,0,1,2,3,4,5,...), the nonnegative integers A000027 preceded by two zeros, where p(S) = 1 - S - S^2.

Original entry on oeis.org

0, 0, 0, 1, 2, 3, 4, 7, 14, 27, 48, 82, 140, 242, 420, 726, 1250, 2153, 3720, 6446, 11184, 19408, 33676, 58431, 101378, 175861, 304988, 528800, 916714, 1589091, 2754612, 4775074, 8277754, 14350253, 24878304, 43131381, 74777890, 129645147, 224770632
Offset: 0

Views

Author

Clark Kimberling, Aug 21 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A290890 for a guide to related sequences.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 60); [0,0,0] cat Coefficients(R!( x^3*(1-2*x+x^2+x^4)/(1-4*x+6*x^2-4*x^3+2*x^5-x^6-x^8) )); // G. C. Greubel, Apr 12 2023
    
  • Mathematica
    z = 60; s = x^4/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,0,1,2,3,4,5,... *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1]  (* A290992 *)
  • PARI
    concat(vector(3), Vec(x^3*(1 - 2*x + x^2 + x^4) / (1 - 4*x + 6*x^2 - 4*x^3 + 2*x^5 - x^6 - x^8) + O(x^50))) \\ Colin Barker, Aug 24 2017
    
  • SageMath
    def f(x): return x^3*(1-2*x+x^2+x^4)/(1-4*x+6*x^2-4*x^3+2*x^5-x^6-x^8)
    def A290992_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( f(x) ).list()
    A290992_list(60) # G. C. Greubel, Apr 12 2023

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - 2*a(n-5) + a(n-6) + a(n-8).
G.f.: x^3*(1 - 2*x + x^2 + x^4) / (1 - 4*x + 6*x^2 - 4*x^3 + 2*x^5 - x^6 - x^8). - Colin Barker, Aug 24 2017
Showing 1-5 of 5 results.