A289780
p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0
Example 1: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2: s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
-
P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
-
z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
-
x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
A289976
p-INVERT of (0,0,1,2,3,5,8,...), the Fibonacci numbers preceded by two zeros, where p(S) = 1 - S - S^2.
Original entry on oeis.org
0, 0, 1, 1, 2, 5, 9, 18, 36, 70, 137, 268, 522, 1017, 1980, 3852, 7492, 14568, 28321, 55051, 106999, 207952, 404134, 785366, 1526186, 2965752, 5763103, 11198858, 21761463, 42286357, 82169547, 159668921, 310262351, 602888757, 1171506956, 2276419286
Offset: 0
-
z = 60; s = x^3/(1 - x - x^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,1,2,3,5,... *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289976 *)
A289781
p-INVERT of the positive Fibonacci numbers (A000045), where p(S) = 1 - S - S^2.
Original entry on oeis.org
1, 3, 9, 27, 80, 237, 701, 2073, 6129, 18120, 53569, 158367, 468181, 1384083, 4091760, 12096453, 35760689, 105719157, 312537041, 923951760, 2731474161, 8075043963, 23872213729, 70573310907, 208635540400, 616788246957, 1823408134821, 5390532719313
Offset: 0
-
z = 60; s = x/(1 - x - x^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000045 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289781 *)
A289977
p-INVERT of (0,0,0,1,2,3,5,8,...), the Fibonacci numbers preceded by three zeros, where p(S) = 1 - S - S^2.
Original entry on oeis.org
0, 0, 0, 1, 1, 2, 3, 7, 12, 23, 41, 77, 140, 258, 470, 861, 1570, 2867, 5225, 9526, 17352, 31607, 57547, 104766, 190684, 347029, 631476, 1148985, 2090427, 3803044, 6918379, 12585209, 22892932, 41641932, 75744383, 137772396, 250592150, 455792833, 829016539
Offset: 0
- Clark Kimberling, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2, 1, -2, 0, -1, -1, 0, 1)
-
z = 60; s = x^4/(1 - x - x^2); p = 1 - s - s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* 0,0,0,1,2,3,5,... *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289977 *)
LinearRecurrence[{2,1,-2,0,-1,-1,0,1},{0,0,0,1,1,2,3,7},40] (* Harvey P. Dale, Jul 14 2018 *)
-
concat(vector(3), Vec(x^3*(1 - x)*(1 - x^2 - x^3) / (1 - 2*x - x^2 + 2*x^3 + x^5 + x^6 - x^8) + O(x^50))) \\ Colin Barker, Aug 24 2017
Showing 1-4 of 4 results.
Comments