cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A289810 p-INVERT of A081696, where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 3, 10, 37, 141, 548, 2155, 8543, 34062, 136393, 547957, 2207144, 8908901, 36021499, 145853606, 591277797, 2399421839, 9745388640, 39611178893, 161109065899, 655647568024, 2669558849029, 10874316446699, 44313536385428, 180644362403905, 736631134007651
Offset: 0

Views

Author

Clark Kimberling, Aug 12 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A289780 for a guide to related sequences.

Crossrefs

Programs

  • Mathematica
    z = 60; s = x/(x + Sqrt[1 - 4*x]); p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A081696 shifted *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289810 *)

A204842 Triangle by rows relating to A081696.

Original entry on oeis.org

1, 1, 2, 3, 4, 2, 9, 12, 6, 2, 29, 38, 20, 8, 2, 97, 126, 68, 30, 10, 2, 333, 430, 236, 110, 42, 12, 2, 1165, 1498, 832, 402, 166, 56, 14, 2, 4135, 5300, 2970, 1472, 640, 238, 72, 16, 2, 14845, 18980, 10710, 5410, 2440, 968, 328, 90, 18, 2
Offset: 0

Views

Author

Gary W. Adamson, Jan 19 2012

Keywords

Examples

			First few rows of the triangle =
1;
1, 2;
3, 4, 2;
9, 12, 6, 2;
29, 38, 20, 8, 2;
97, 126, 68, 30, 10, 2;
333, 430, 236, 110, 42, 12, 2;
1165, 1498, 832, 402, 166, 56, 14, 2;
4135, 5300, 2970, 1472, 640, 238, 72, 16, 2;
14845, 18980, 10710, 5410, 2440, 968, 328, 90, 18, 2;
...
Top row of M^3 = [9, 12, 6, 2, 0, 0, 0,...]
		

Crossrefs

Cf. A081696 (first column and also row sums).

Programs

  • Maple
    A204842T := proc(n,k)
        if n =0 and k =1 then
            2;
        elif k <0 or k >n+1 then
            0;
        else
            1;
        end if ;
    end proc:
    A204842 := proc(n,k)
        local A;
        A := Matrix(n+1,n+1) ;
        for row from 1 to n+1 do
        for col from 1 to n+1 do
                A[row, col] := A204842T(row-1,col-1) ;
        end do:
        end do:
        Mn := LinearAlgebra[MatrixPower](A , n);
        Mn[1,k+1] ;
    end proc:
    for n from 0 to 10 do
        for k from 0 to n do
        printf("%d ",A204842(n,k)) ;
        end do:
        printf("\n") ;
    end do:

Formula

n-th row of the triangle is the top row of M^n, where M is the following infinite square production matrix:
1, 2, 0, 0, 0, 0,...
1, 1, 1, 0, 0, 0,...
1, 1, 1, 1, 0, 0,...
1, 1, 1, 1, 1, 0,...
1, 1, 1, 1, 1, 1,...
...
Conjecture: T(n,1) = 2*A109262(n). T(n,2)=2*A109263(n). - R. J. Mathar, Jul 21 2015

A000984 Central binomial coefficients: binomial(2*n,n) = (2*n)!/(n!)^2.

Original entry on oeis.org

1, 2, 6, 20, 70, 252, 924, 3432, 12870, 48620, 184756, 705432, 2704156, 10400600, 40116600, 155117520, 601080390, 2333606220, 9075135300, 35345263800, 137846528820, 538257874440, 2104098963720, 8233430727600, 32247603683100, 126410606437752, 495918532948104, 1946939425648112
Offset: 0

Views

Author

Keywords

Comments

Devadoss refers to these numbers as type B Catalan numbers (cf. A000108).
Equal to the binomial coefficient sum Sum_{k=0..n} binomial(n,k)^2.
Number of possible interleavings of a program with n atomic instructions when executed by two processes. - Manuel Carro (mcarro(AT)fi.upm.es), Sep 22 2001
Convolving a(n) with itself yields A000302, the powers of 4. - T. D. Noe, Jun 11 2002
Number of ordered trees with 2n+1 edges, having root of odd degree and nonroot nodes of outdegree 0 or 2. - Emeric Deutsch, Aug 02 2002
Also number of directed, convex polyominoes having semiperimeter n+2.
Also number of diagonally symmetric, directed, convex polyominoes having semiperimeter 2n+2. - Emeric Deutsch, Aug 03 2002
The second inverse binomial transform of this sequence is this sequence with interpolated zeros. Its g.f. is (1 - 4*x^2)^(-1/2), with n-th term C(n,n/2)(1+(-1)^n)/2. - Paul Barry, Jul 01 2003
Number of possible values of a 2n-bit binary number for which half the bits are on and half are off. - Gavin Scott (gavin(AT)allegro.com), Aug 09 2003
Ordered partitions of n with zeros to n+1, e.g., for n=4 we consider the ordered partitions of 11110 (5), 11200 (30), 13000 (20), 40000 (5) and 22000 (10), total 70 and a(4)=70. See A001700 (esp. Mambetov Bektur's comment). - Jon Perry, Aug 10 2003
Number of nondecreasing sequences of n integers from 0 to n: a(n) = Sum_{i_1=0..n} Sum_{i_2=i_1..n}...Sum_{i_n=i_{n-1}..n}(1). - J. N. Bearden (jnb(AT)eller.arizona.edu), Sep 16 2003
Number of peaks at odd level in all Dyck paths of semilength n+1. Example: a(2)=6 because we have U*DU*DU*D, U*DUUDD, UUDDU*D, UUDUDD, UUU*DDD, where U=(1,1), D=(1,-1) and * indicates a peak at odd level. Number of ascents of length 1 in all Dyck paths of semilength n+1 (an ascent in a Dyck path is a maximal string of up steps). Example: a(2)=6 because we have uDuDuD, uDUUDD, UUDDuD, UUDuDD, UUUDDD, where an ascent of length 1 is indicated by a lower case letter. - Emeric Deutsch, Dec 05 2003
a(n-1) = number of subsets of 2n-1 distinct elements taken n at a time that contain a given element. E.g., n=4 -> a(3)=20 and if we consider the subsets of 7 taken 4 at a time with a 1 we get (1234, 1235, 1236, 1237, 1245, 1246, 1247, 1256, 1257, 1267, 1345, 1346, 1347, 1356, 1357, 1367, 1456, 1457, 1467, 1567) and there are 20 of them. - Jon Perry, Jan 20 2004
The dimension of a particular (necessarily existent) absolutely universal embedding of the unitary dual polar space DSU(2n,q^2) where q>2. - J. Taylor (jt_cpp(AT)yahoo.com), Apr 02 2004.
Number of standard tableaux of shape (n+1, 1^n). - Emeric Deutsch, May 13 2004
Erdős, Graham et al. conjectured that a(n) is never squarefree for sufficiently large n (cf. Graham, Knuth, Patashnik, Concrete Math., 2nd ed., Exercise 112). Sárközy showed that if s(n) is the square part of a(n), then s(n) is asymptotically (sqrt(2)-2) * (sqrt(n)) * zeta(1/2). Granville and Ramare proved that the only squarefree values are a(1)=2, a(2)=6 and a(4)=70. - Jonathan Vos Post, Dec 04 2004 [For more about this conjecture, see A261009. - N. J. A. Sloane, Oct 25 2015]
The MathOverflow link contains the following comment (slightly edited): The Erdős squarefree conjecture (that a(n) is never squarefree for n>4) was proved in 1980 by Sárközy, A. (On divisors of binomial coefficients. I. J. Number Theory 20 (1985), no. 1, 70-80.) who showed that the conjecture holds for all sufficiently large values of n, and by A. Granville and O. Ramaré (Explicit bounds on exponential sums and the scarcity of squarefree binomial coefficients. Mathematika 43 (1996), no. 1, 73-107) who showed that it holds for all n>4. - Fedor Petrov, Nov 13 2010. [From N. J. A. Sloane, Oct 29 2015]
p divides a((p-1)/2)-1=A030662(n) for prime p=5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97, ... = A002144(n) Pythagorean primes: primes of form 4n+1. - Alexander Adamchuk, Jul 04 2006
The number of direct routes from my home to Granny's when Granny lives n blocks south and n blocks east of my home in Grid City. To obtain a direct route, from the 2n blocks, choose n blocks on which one travels south. For example, a(2)=6 because there are 6 direct routes: SSEE, SESE, SEES, EESS, ESES and ESSE. - Dennis P. Walsh, Oct 27 2006
Inverse: With q = -log(log(16)/(pi a(n)^2)), ceiling((q + log(q))/log(16)) = n. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 26 2007
Number of partitions with Ferrers diagrams that fit in an n X n box (including the empty partition of 0). Example: a(2) = 6 because we have: empty, 1, 2, 11, 21 and 22. - Emeric Deutsch, Oct 02 2007
So this is the 2-dimensional analog of A008793. - William Entriken, Aug 06 2013
The number of walks of length 2n on an infinite linear lattice that begins and ends at the origin. - Stefan Hollos (stefan(AT)exstrom.com), Dec 10 2007
The number of lattice paths from (0,0) to (n,n) using steps (1,0) and (0,1). - Joerg Arndt, Jul 01 2011
Integral representation: C(2n,n)=1/Pi Integral [(2x)^(2n)/sqrt(1 - x^2),{x,-1, 1}], i.e., C(2n,n)/4^n is the moment of order 2n of the arcsin distribution on the interval (-1,1). - N-E. Fahssi, Jan 02 2008
Also the Catalan transform of A000079. - R. J. Mathar, Nov 06 2008
Straub, Amdeberhan and Moll: "... it is conjectured that there are only finitely many indices n such that C_n is not divisible by any of 3, 5, 7 and 11." - Jonathan Vos Post, Nov 14 2008
Equals INVERT transform of A081696: (1, 1, 3, 9, 29, 97, 333, ...). - Gary W. Adamson, May 15 2009
Also, in sports, the number of ordered ways for a "Best of 2n-1 Series" to progress. For example, a(2) = 6 means there are six ordered ways for a "best of 3" series to progress. If we write A for a win by "team A" and B for a win by "team B" and if we list the played games chronologically from left to right then the six ways are AA, ABA, BAA, BB, BAB, and ABB. (Proof: To generate the a(n) ordered ways: Write down all a(n) ways to designate n of 2n games as won by team A. Remove the maximal suffix of identical letters from each of these.) - Lee A. Newberg, Jun 02 2009
Number of n X n binary arrays with rows, considered as binary numbers, in nondecreasing order, and columns, considered as binary numbers, in nonincreasing order. - R. H. Hardin, Jun 27 2009
Hankel transform is 2^n. - Paul Barry, Aug 05 2009
It appears that a(n) is also the number of quivers in the mutation class of twisted type BC_n for n>=2.
Central terms of Pascal's triangle: a(n) = A007318(2*n,n). - Reinhard Zumkeller, Nov 09 2011
Number of words on {a,b} of length 2n such that no prefix of the word contains more b's than a's. - Jonathan Nilsson, Apr 18 2012
From Pascal's triangle take row(n) with terms in order a1,a2,..a(n) and row(n+1) with terms b1,b2,..b(n), then 2*(a1*b1 + a2*b2 + ... + a(n)*b(n)) to get the terms in this sequence. - J. M. Bergot, Oct 07 2012. For example using rows 4 and 5: 2*(1*(1) + 4*(5) + 6*(10) + 4*(10) + 1*(5)) = 252, the sixth term in this sequence.
Take from Pascal's triangle row(n) with terms b1, b2, ..., b(n+1) and row(n+2) with terms c1, c2, ..., c(n+3) and find the sum b1*c2 + b2*c3 + ... + b(n+1)*c(n+2) to get A000984(n+1). Example using row(3) and row(5) gives sum 1*(5)+3*(10)+3*(10)+1*(5) = 70 = A000984(4). - J. M. Bergot, Oct 31 2012
a(n) == 2 mod n^3 iff n is a prime > 3. (See Mestrovic link, p. 4.) - Gary Detlefs, Feb 16 2013
Conjecture: For any positive integer n, the polynomial sum_{k=0}^n a(k)x^k is irreducible over the field of rational numbers. In general, for any integer m>1 and n>0, the polynomial f_{m,n}(x) = Sum_{k=0..n} (m*k)!/(k!)^m*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 23 2013
This comment generalizes the comment dated Oct 31 2012 and the second of the sequence's original comments. For j = 1 to n, a(n) = Sum_{k=0..j} C(j,k)* C(2n-j, n-k) = 2*Sum_{k=0..j-1} C(j-1,k)*C(2n-j, n-k). - Charlie Marion, Jun 07 2013
The differences between consecutive terms of the sequence of the quotients between consecutive terms of this sequence form a sequence containing the reciprocals of the triangular numbers. In other words, a(n+1)/a(n)-a(n)/a(n-1) = 2/(n*(n+1)). - Christian Schulz, Jun 08 2013
Number of distinct strings of length 2n using n letters A and n letters B. - Hans Havermann, May 07 2014
From Fung Lam, May 19 2014: (Start)
Expansion of G.f. A(x) = 1/(1+q*x*c(x)), where parameter q is positive or negative (except q=-1), and c(x) is the g.f. of A000108 for Catalan numbers. The case of q=-1 recovers the g.f. of A000108 as xA^2-A+1=0. The present sequence A000984 refers to q=-2. Recurrence: (1+q)*(n+2)*a(n+2) + ((q*q-4*q-4)*n + 2*(q*q-q-1))*a(n+1) - 2*q*q*(2*n+1)*a(n) = 0, a(0)=1, a(1)=-q. Asymptotics: a(n) ~ ((q+2)/(q+1))*(q^2/(-q-1))^n, q<=-3, a(n) ~ (-1)^n*((q+2)/(q+1))*(q^2/(q+1))^n, q>=5, and a(n) ~ -Kq*2^(2*n)/sqrt(Pi*n^3), where the multiplicative constant Kq is given by K1=1/9 (q=1), K2=1/8 (q=2), K3=3/25 (q=3), K4=1/9 (q=4). These formulas apply to existing sequences A126983 (q=1), A126984 (q=2), A126982 (q=3), A126986 (q=4), A126987 (q=5), A127017 (q=6), A127016 (q=7), A126985 (q=8), A127053 (q=9), and to A007854 (q=-3), A076035 (q=-4), A076036 (q=-5), A127628 (q=-6), A126694 (q=-7), A115970 (q=-8). (End)
a(n)*(2^n)^(j-2) equals S(n), where S(n) is the n-th number in the self-convolved sequence which yields the powers of 2^j for all integers j, n>=0. For example, when n=5 and j=4, a(5)=252; 252*(2^5)^(4-2) = 252*1024 = 258048. The self-convolved sequence which yields powers of 16 is {1, 8, 96, 1280, 17920, 258048, ...}; i.e., S(5) = 258048. Note that the convolved sequences will be composed of numbers decreasing from 1 to 0, when j<2 (exception being j=1, where the first two numbers in the sequence are 1 and all others decreasing). - Bob Selcoe, Jul 16 2014
The variance of the n-th difference of a sequence of pairwise uncorrelated random variables each with variance 1. - Liam Patrick Roche, Jun 04 2015
Number of ordered trees with n edges where vertices at level 1 can be of 2 colors. Indeed, the standard decomposition of ordered trees leading to the equation C = 1 + zC^2 (C is the Catalan function), yields this time G = 1 + 2zCG, from where G = 1/sqrt(1-4z). - Emeric Deutsch, Jun 17 2015
Number of monomials of degree at most n in n variables. - Ran Pan, Sep 26 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r, then V(n, 2^n) / Pi = V(n-1, 2^n) * a(n/2) for all even n. - Peter Luschny, Oct 12 2015
a(n) is the number of sets {i1,...,in} of length n such that n >= i1 >= i2 >= ... >= in >= 0. For instance, a(2) = 6 as there are only 6 such sets: (2,2) (2,1) (2,0) (1,1) (1,0) (0,0). - Anton Zakharov, Jul 04 2016
From Ralf Steiner, Apr 07 2017: (Start)
By analytic continuation to the entire complex plane there exist regularized values for divergent sums such as:
Sum_{k>=0} a(k)/(-2)^k = 1/sqrt(3).
Sum_{k>=0} a(k)/(-1)^k = 1/sqrt(5).
Sum_{k>=0} a(k)/(-1/2)^k = 1/3.
Sum_{k>=0} a(k)/(1/2)^k = -1/sqrt(7)i.
Sum_{k>=0} a(k)/(1)^k = -1/sqrt(3)i.
Sum_{k>=0} a(k)/2^k = -i. (End)
Number of sequences (e(1), ..., e(n+1)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) > e(j). [Martinez and Savage, 2.18] - Eric M. Schmidt, Jul 17 2017
The o.g.f. for the sequence equals the diagonal of any of the following the rational functions: 1/(1 - (x + y)), 1/(1 - (x + y*z)), 1/(1 - (x + x*y + y*z)) or 1/(1 - (x + y + y*z)). - Peter Bala, Jan 30 2018
From Colin Defant, Sep 16 2018: (Start)
Let s denote West's stack-sorting map. a(n) is the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 231, and 321. a(n) is also the number of permutations pi of [n+1] such that s(pi) avoids the patterns 132, 312, and 321.
a(n) is the number of permutations of [n+1] that avoid the patterns 1342, 3142, 3412, and 3421. (End)
All binary self-dual codes of length 4n, for n>0, must contain at least a(n) codewords of weight 2n. More to the point, there will always be at least one, perhaps unique, binary self-dual code of length 4n that will contain exactly a(n) codewords that have a hamming weight equal to half the length of the code (2n). This code can be constructed by direct summing the unique binary self-dual code of length 2 (up to permutation equivalence) to itself an even number of times. A permutation equivalent code can be constructed by augmenting two identity matrices of length 2n together. - Nathan J. Russell, Nov 25 2018
From Isaac Saffold, Dec 28 2018: (Start)
Let [b/p] denote the Legendre symbol and 1/b denote the inverse of b mod p. Then, for m and n, where n is not divisible by p,
[(m+n)/p] == [n/p]*Sum_{k=0..(p-1)/2} (-m/(4*n))^k * a(k) (mod p).
Evaluating this identity for m = -1 and n = 1 demonstrates that, for all odd primes p, Sum_{k=0..(p-1)/2} (1/4)^k * a(k) is divisible by p. (End)
Number of vertices of the subgraph of the (2n-1)-dimensional hypercube induced by all bitstrings with n-1 or n many 1s. The middle levels conjecture asserts that this graph has a Hamilton cycle. - Torsten Muetze, Feb 11 2019
a(n) is the number of walks of length 2n from the origin with steps (1,1) and (1,-1) that stay on or above the x-axis. Equivalently, a(n) is the number of walks of length 2n from the origin with steps (1,0) and (0,1) that stay in the first octant. - Alexander Burstein, Dec 24 2019
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {3>1, 1>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the second element but smaller than the third elements. - Sergey Kitaev, Dec 08 2020
From Gus Wiseman, Jul 21 2021: (Start)
Also the number of integer compositions of 2n+1 with alternating sum 1, where the alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. For example, the a(0) = 1 through a(2) = 6 compositions are:
(1) (2,1) (3,2)
(1,1,1) (1,2,2)
(2,2,1)
(1,1,2,1)
(2,1,1,1)
(1,1,1,1,1)
The following relate to these compositions:
- The unordered version is A000070.
- The alternating sum -1 version is counted by A001791, ranked by A345910/A345912.
- The alternating sum 0 version is counted by A088218, ranked by A344619.
- Including even indices gives A126869.
- The complement is counted by A202736.
- Ranked by A345909 (reverse: A345911).
Equivalently, a(n) counts binary numbers with 2n+1 digits and one more 1 than 0's. For example, the a(2) = 6 binary numbers are: 10011, 10101, 10110, 11001, 11010, 11100.
(End)
From Michael Wallner, Jan 25 2022: (Start)
a(n) is the number of nx2 Young tableaux with a single horizontal wall between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021].
Example for a(2)=6:
3 4 2 4 3 4 3|4 4|3 2|4
1|2, 1|3, 2|1, 1 2, 1 2, 1 3
a(n) is also the number of nx2 Young tableaux with n "walls" between the first and second column.
Example for a(2)=6:
3|4 2|4 4|3 3|4 4|3 4|2
1|2, 1|3, 1|2, 2|1, 2|1, 3|1 (End)
From Shel Kaphan, Jan 12 2023: (Start)
a(n)/4^n is the probability that a fair coin tossed 2n times will come up heads exactly n times and tails exactly n times, or that a random walk with steps of +-1 will return to the starting point after 2n steps (not necessarily for the first time). As n becomes large, this number asymptotically approaches 1/sqrt(n*Pi), using Stirling's approximation for n!.
a(n)/(4^n*(2n-1)) is the probability that a random walk with steps of +-1 will return to the starting point for the first time after 2n steps. The absolute value of the n-th term of A144704 is denominator of this fraction.
Considering all possible random walks of exactly 2n steps with steps of +-1, a(n)/(2n-1) is the number of such walks that return to the starting point for the first time after 2n steps. See the absolute values of A002420 or A284016 for these numbers. For comparison, as mentioned by Stefan Hollos, Dec 10 2007, a(n) is the number of such walks that return to the starting point after 2n steps, but not necessarily for the first time. (End)
p divides a((p-1)/2) + 1 for primes p of the form 4*k+3 (A002145). - Jules Beauchamp, Feb 11 2023
Also the size of the shuffle product of two words of length n, such that the union of the two words consist of 2n distinct elements. - Robert C. Lyons, Mar 15 2023
a(n) is the number of vertices of the n-dimensional cyclohedron W_{n+1}. - Jose Bastidas, Mar 25 2025
Consider a stack of pancakes of height n, where the only allowed operation is reversing the top portion of the stack. First, perform a series of reversals of increasing sizes, followed by a series of reversals of decreasing sizes. The number of distinct permutations of the initial stack that can be reached through these operations is a(n). - Thomas Baruchel, May 12 2025

Examples

			G.f.: 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 + 924*x^6 + ...
For n=2, a(2) = 4!/(2!)^2 = 24/4 = 6, and this is the middle coefficient of the binomial expansion (a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4. - _Michael B. Porter_, Jul 06 2016
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
  • Arthur T. Benjamin and Jennifer J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 160.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 575, line -3, with a=b=n.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 101.
  • Emeric Deutsch and Louis W. Shapiro, Seventeen Catalan identities, Bulletin of the Institute of Combinatorics and its Applications, 31 (2001), 31-38.
  • Henry W. Gould, Combinatorial Identities, Morgantown, 1972, (3.66), page 30.
  • Ronald. L. Graham, Donald E. Knuth, and Oren Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, Second Ed., see Exercise 112.
  • Martin Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), 3-124.
  • Leonard Lipshitz and A. van der Poorten, "Rational functions, diagonals, automata and arithmetic", in Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), 339-358.
  • J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A002420, A002457, A030662, A002144, A135091, A081696, A182400. Differs from A071976 at 10th term.
Bisection of A001405 and of A226302. See also A025565, the same ordered partitions but without all in which are two successive zeros: 11110 (5), 11200 (18), 13000 (2), 40000 (0) and 22000 (1), total 26 and A025565(4)=26.
Cf. A226078, A051924 (first differences).
Cf. A258290 (arithmetic derivative). Cf. A098616, A214377.
See A261009 for a conjecture about this sequence.
Cf. A046521 (first column).
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.

Programs

  • GAP
    List([1..1000], n -> Binomial(2*n,n)); # Muniru A Asiru, Jan 30 2018
  • Haskell
    a000984 n = a007318_row (2*n) !! n  -- Reinhard Zumkeller, Nov 09 2011
    
  • Magma
    a:= func< n | Binomial(2*n,n) >; [ a(n) : n in [0..10]];
    
  • Maple
    A000984 := n-> binomial(2*n,n); seq(A000984(n), n=0..30);
    with(combstruct); [seq(count([S,{S=Prod(Set(Z,card=i),Set(Z,card=i))}, labeled], size=(2*i)), i=0..20)];
    with(combstruct); [seq(count([S,{S=Sequence(Union(Arch,Arch)), Arch=Prod(Epsilon, Sequence(Arch),Z)},unlabeled],size=i), i=0..25)];
    with(combstruct):bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,unlabeled],size=n)*n, n=1..25); # Zerinvary Lajos, Dec 05 2007
    A000984List := proc(m) local A, P, n; A := [1,2]; P := [1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), 2*P[-1]]);
    A := [op(A), 2*P[-1]] od; A end: A000984List(28); # Peter Luschny, Mar 24 2022
  • Mathematica
    Table[Binomial[2n, n], {n, 0, 24}] (* Alonso del Arte, Nov 10 2005 *)
    CoefficientList[Series[1/Sqrt[1-4x],{x,0,25}],x]  (* Harvey P. Dale, Mar 14 2011 *)
  • Maxima
    A000984(n):=(2*n)!/(n!)^2$ makelist(A000984(n),n,0,30); /* Martin Ettl, Oct 22 2012 */
    
  • PARI
    A000984(n)=binomial(2*n,n) \\ much more efficient than (2n)!/n!^2. \\ M. F. Hasler, Feb 26 2014
    
  • PARI
    fv(n,p)=my(s);while(n\=p,s+=n);s
    a(n)=prodeuler(p=2,2*n,p^(fv(2*n,p)-2*fv(n,p))) \\ Charles R Greathouse IV, Aug 21 2013
    
  • PARI
    fv(n,p)=my(s);while(n\=p,s+=n);s
    a(n)=my(s=1);forprime(p=2,2*n,s*=p^(fv(2*n,p)-2*fv(n,p)));s \\ Charles R Greathouse IV, Aug 21 2013
    
  • Python
    from _future_ import division
    A000984_list, b = [1], 1
    for n in range(10**3):
        b = b*(4*n+2)//(n+1)
        A000984_list.append(b) # Chai Wah Wu, Mar 04 2016
    

Formula

a(n)/(n+1) = A000108(n), the Catalan numbers.
G.f.: A(x) = (1 - 4*x)^(-1/2) = 1F0(1/2;;4x).
a(n+1) = 2*A001700(n) = A030662(n) + 1. a(2*n) = A001448(n), a(2*n+1) = 2*A002458(n) =A099976.
D-finite with recurrence: n*a(n) + 2*(1-2*n)*a(n-1)=0.
a(n) = 2^n/n! * Product_{k=0..n-1} (2*k+1).
a(n) = a(n-1)*(4-2/n) = Product_{k=1..n} (4-2/k) = 4*a(n-1) + A002420(n) = A000142(2*n)/(A000142(n)^2) = A001813(n)/A000142(n) = sqrt(A002894(n)) = A010050(n)/A001044(n) = (n+1)*A000108(n) = -A005408(n-1)*A002420(n). - Henry Bottomley, Nov 10 2000
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ 4^n / sqrt(Pi * n). - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
Integral representation as n-th moment of a positive function on the interval [0, 4]: a(n) = Integral_{x=0..4}(x^n*((x*(4-x))^(-1/2))/Pi), n=0, 1, ... This representation is unique. - Karol A. Penson, Sep 17 2001
Sum_{n>=1} 1/a(n) = (2*Pi*sqrt(3) + 9)/27. [Lehmer 1985, eq. (15)] - Benoit Cloitre, May 01 2002 (= A073016. - Bernard Schott, Jul 20 2022)
a(n) = Max_{ (i+j)!/(i!j!) | 0<=i,j<=n }. - Benoit Cloitre, May 30 2002
a(n) = Sum_{k=0..n} binomial(n+k-1,k), row sums of A059481. - Vladeta Jovovic, Aug 28 2002
E.g.f.: exp(2*x)*I_0(2x), where I_0 is Bessel function. - Michael Somos, Sep 08 2002
E.g.f.: I_0(2*x) = Sum a(n)*x^(2*n)/(2*n)!, where I_0 is Bessel function. - Michael Somos, Sep 09 2002
a(n) = Sum_{k=0..n} binomial(n, k)^2. - Benoit Cloitre, Jan 31 2003
Determinant of n X n matrix M(i, j) = binomial(n+i, j). - Benoit Cloitre, Aug 28 2003
Given m = C(2*n, n), let f be the inverse function, so that f(m) = n. Letting q denote -log(log(16)/(m^2*Pi)), we have f(m) = ceiling( (q + log(q)) / log(16) ). - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Oct 30 2003
a(n) = 2*Sum_{k=0..(n-1)} a(k)*a(n-k+1)/(k+1). - Philippe Deléham, Jan 01 2004
a(n+1) = Sum_{j=n..n*2+1} binomial(j, n). E.g., a(4) = C(7,3) + C(6,3) + C(5,3) + C(4,3) + C(3,3) = 35 + 20 + 10 + 4 + 1 = 70. - Jon Perry, Jan 20 2004
a(n) = (-1)^(n)*Sum_{j=0..(2*n)} (-1)^j*binomial(2*n, j)^2. - Helena Verrill (verrill(AT)math.lsu.edu), Jul 12 2004
a(n) = Sum_{k=0..n} binomial(2n+1, k)*sin((2n-2k+1)*Pi/2). - Paul Barry, Nov 02 2004
a(n-1) = (1/2)*(-1)^n*Sum_{0<=i, j<=n}(-1)^(i+j)*binomial(2n, i+j). - Benoit Cloitre, Jun 18 2005
a(n) = C(2n, n-1) + C(n) = A001791(n) + A000108(n). - Lekraj Beedassy, Aug 02 2005
G.f.: c(x)^2/(2*c(x)-c(x)^2) where c(x) is the g.f. of A000108. - Paul Barry, Feb 03 2006
a(n) = A006480(n) / A005809(n). - Zerinvary Lajos, Jun 28 2007
a(n) = Sum_{k=0..n} A106566(n,k)*2^k. - Philippe Deléham, Aug 25 2007
a(n) = Sum_{k>=0} A039599(n, k). a(n) = Sum_{k>=0} A050165(n, k). a(n) = Sum_{k>=0} A059365(n, k)*2^k, n>0. a(n+1) = Sum_{k>=0} A009766(n, k)*2^(n-k+1). - Philippe Deléham, Jan 01 2004
a(n) = 4^n*Sum_{k=0..n} C(n,k)(-4)^(-k)*A000108(n+k). - Paul Barry, Oct 18 2007
a(n) = Sum_{k=0..n} A039598(n,k)*A059841(k). - Philippe Deléham, Nov 12 2008
A007814(a(n)) = A000120(n). - Vladimir Shevelev, Jul 20 2009
From Paul Barry, Aug 05 2009: (Start)
G.f.: 1/(1-2x-2x^2/(1-2x-x^2/(1-2x-x^2/(1-2x-x^2/(1-... (continued fraction);
G.f.: 1/(1-2x/(1-x/(1-x/(1-x/(1-... (continued fraction). (End)
If n>=3 is prime, then a(n) == 2 (mod 2*n). - Vladimir Shevelev, Sep 05 2010
Let A(x) be the g.f. and B(x) = A(-x), then B(x) = sqrt(1-4*x*B(x)^2). - Vladimir Kruchinin, Jan 16 2011
a(n) = (-4)^n*sqrt(Pi)/(gamma((1/2-n))*gamma(1+n)). - Gerry Martens, May 03 2011
a(n) = upper left term in M^n, M = the infinite square production matrix:
2, 2, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, .... - Gary W. Adamson, Jul 14 2011
a(n) = Hypergeometric([-n,-n],[1],1). - Peter Luschny, Nov 01 2011
E.g.f.: hypergeometric([1/2],[1],4*x). - Wolfdieter Lang, Jan 13 2012
a(n) = 2*Sum_{k=0..n-1} a(k)*A000108(n-k-1). - Alzhekeyev Ascar M, Mar 09 2012
G.f.: 1 + 2*x/(U(0)-2*x) where U(k) = 2*(2*k+1)*x + (k+1) - 2*(k+1)*(2*k+3)*x/U(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Jun 28 2012
a(n) = Sum_{k=0..n} binomial(n,k)^2*H(k)/(2*H(n)-H(2*n)), n>0, where H(n) is the n-th harmonic number. - Gary Detlefs, Mar 19 2013
G.f.: Q(0)*(1-4*x), where Q(k) = 1 + 4*(2*k+1)*x/( 1 - 1/(1 + 2*(k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 11 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
E.g.f.: E(0)/2, where E(k) = 1 + 1/(1 - 2*x/(2*x + (k+1)^2/(2*k+1)/E(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
Special values of Jacobi polynomials, in Maple notation: a(n) = 4^n*JacobiP(n,0,-1/2-n,-1). - Karol A. Penson, Jul 27 2013
a(n) = 2^(4*n)/((2*n+1)*Sum_{k=0..n} (-1)^k*C(2*n+1,n-k)/(2*k+1)). - Mircea Merca, Nov 12 2013
a(n) = C(2*n-1,n-1)*C(4*n^2,2)/(3*n*C(2*n+1,3)), n>0. - Gary Detlefs, Jan 02 2014
Sum_{n>=0} a(n)/n! = A234846. - Richard R. Forberg, Feb 10 2014
0 = a(n)*(16*a(n+1) - 6*a(n+2)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Sep 17 2014
a(n+1) = 4*a(n) - 2*A000108(n). Also a(n) = 4^n*Product_{k=1..n}(1-1/(2*k)). - Stanislav Sykora, Aug 09 2014
G.f.: Sum_{n>=0} x^n/(1-x)^(2*n+1) * Sum_{k=0..n} C(n,k)^2 * x^k. - Paul D. Hanna, Nov 08 2014
a(n) = (-4)^n*binomial(-1/2,n). - Jean-François Alcover, Feb 10 2015
a(n) = 4^n*hypergeom([-n,1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k,k)*2^(n-2*k). - Robert FERREOL, Aug 29 2015
a(n) ~ 4^n*(2-2/(8*n+2)^2+21/(8*n+2)^4-671/(8*n+2)^6+45081/(8*n+2)^8)/sqrt((4*n+1) *Pi). - Peter Luschny, Oct 14 2015
A(-x) = 1/x * series reversion( x*(2*x + sqrt(1 + 4*x^2)) ). Compare with the o.g.f. B(x) of A098616, which satisfies B(-x) = 1/x * series reversion( x*(2*x + sqrt(1 - 4*x^2)) ). See also A214377. - Peter Bala, Oct 19 2015
a(n) = GegenbauerC(n,-n,-1). - Peter Luschny, May 07 2016
a(n) = gamma(1+2*n)/gamma(1+n)^2. - Andres Cicuttin, May 30 2016
Sum_{n>=0} (-1)^n/a(n) = 4*(5 - sqrt(5)*log(phi))/25 = 0.6278364236143983844442267..., where phi is the golden ratio. - Ilya Gutkovskiy, Jul 04 2016
From Peter Bala, Jul 22 2016: (Start)
This sequence occurs as the closed-form expression for several binomial sums:
a(n) = Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)*binomial(2*n + 1,k).
a(n) = 2*Sum_{k = 0..2*n-1} (-1)^(n+k)*binomial(2*n - 1,k)*binomial(2*n,k) for n >= 1.
a(n) = 2*Sum_{k = 0..n-1} binomial(n - 1,k)*binomial(n,k) for n >= 1.
a(n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x + k,n)*binomial(y + k,n) = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x - k,n)*binomial(y - k,n) for arbitrary x and y.
For m = 3,4,5,... both Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x + k,n)*binomial(y + k,n) and Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x - k,n)*binomial(y - k,n) appear to equal Kronecker's delta(n,0).
a(n) = (-1)^n*Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)*binomial(x + k,n)*binomial(y - k,n) for arbitrary x and y.
For m = 3,4,5,... Sum_{k = 0..m*n} (-1)^k*binomial(m*n,k)*binomial(x + k,n)*binomial(y - k,n) appears to equal Kronecker's delta(n,0).
a(n) = Sum_{k = 0..2n} (-1)^k*binomial(2*n,k)*binomial(3*n - k,n)^2 = Sum_{k = 0..2*n} (-1)^k*binomial(2*n,k)* binomial(n + k,n)^2. (Gould, Vol. 7, 5.23).
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(2*n,n + k)*binomial(n + k,n)^2. (End)
From Ralf Steiner, Apr 07 2017: (Start)
Sum_{k>=0} a(k)/(p/q)^k = sqrt(p/(p-4q)) for q in N, p in Z/{-4q< (some p) <-2}.
...
Sum_{k>=0} a(k)/(-4)^k = 1/sqrt(2).
Sum_{k>=0} a(k)/(17/4)^k = sqrt(17).
Sum_{k>=0} a(k)/(18/4)^k = 3.
Sum_{k>=0} a(k)/5^k = sqrt(5).
Sum_{k>=0} a(k)/6^k = sqrt(3).
Sum_{k>=0} a(k)/8^k = sqrt(2).
...
Sum_{k>=0} a(k)/(p/q)^k = sqrt(p/(p-4q)) for p>4q.(End)
Boas-Buck recurrence: a(n) = (2/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, a(0) = 1. Proof from a(n) = A046521(n, 0). See a comment there. - Wolfdieter Lang, Aug 10 2017
a(n) = Sum_{k = 0..n} (-1)^(n-k) * binomial(2*n+1, k) for n in N. - Rene Adad, Sep 30 2017
a(n) = A034870(n,n). - Franck Maminirina Ramaharo, Nov 26 2018
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*(sqrt(4-x) + sqrt(x)*arcsin(sqrt(x)/2)) / (4-x)^(3/2).
E.g.f. for {1/a(n)}: 1 + exp(x/4)*sqrt(Pi*x)*erf(sqrt(x)/2)/2.
Sum_{n>=0} (-1)^n/a(n) = 4*(1/5 - arcsinh(1/2)/(5*sqrt(5))). (End)
From Peter Luschny, Sep 08 2022: (Start)
a(n) = 2^(2*n)*Product_{k=1..2*n} k^((-1)^(k+1)) = A056040(2*n).
a(n) = A001316(n) * A356637(n) * A261130(n) for n >= 2. (End)
a(n) = 4^n*binomial(n-1/2,-1/2) = 4^n*GegenbauerC(n,1/4,1). - Gerry Martens, Oct 19 2022
Occurs on the right-hand side of the binomial sum identities Sum_{k = -n..n} (-1)^k * (n + x - k) * binomial(2*n, n+k)^2 = (x + n)*a(n) and Sum_{k = -n..n} (-1)^k * (n + x - k)^2 * binomial(2*n, n+k)^3 = x*(x + 2*n)*a(n) (x arbitrary). Compare with the identity: Sum_{k = -n..n} (-1)^k * binomial(2*n, n+k)^2 = a(n). - Peter Bala, Jul 31 2023
From Peter Bala, Mar 31 2024: (Start)
4^n*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
16^n = Sum_{k = 0..2*n} a(k)*a(2*n-k). (End)
From Gary Detlefs, May 28 2024: (Start)
a(n) = Sum_{k=0..floor(n/2)} binomial(n,2k)*binomial(2*k,k)*2^(n-2*k). (H. W. Gould) - Gary Detlefs, May 28 2024
a(n) = Sum_{k=0..2*n} (-1)^k*binomial(2n,k)*binomial(2*n+2*k,n+k)*3^(2*n-k). (H. W. Gould) (End)
a(n) = Product_{k>=n+1} k^2/(k^2 - n^2). - Antonio Graciá Llorente, Sep 08 2024
a(n) = Product_{k=1..n} A003418(floor(2*n/k))^((-1)^(k+1)) (Golomb, 2003). - Amiram Eldar, Aug 08 2025

A009766 Catalan's triangle T(n,k) (read by rows): each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 5, 5, 1, 4, 9, 14, 14, 1, 5, 14, 28, 42, 42, 1, 6, 20, 48, 90, 132, 132, 1, 7, 27, 75, 165, 297, 429, 429, 1, 8, 35, 110, 275, 572, 1001, 1430, 1430, 1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862, 1, 10, 54, 208, 637, 1638, 3640, 7072, 11934
Offset: 0

Views

Author

Keywords

Comments

The entries in this triangle (in its many forms) are often called ballot numbers.
T(n,k) = number of standard tableaux of shape (n,k) (n > 0, 0 <= k <= n). Example: T(3,1) = 3 because we have 134/2, 124/3 and 123/4. - Emeric Deutsch, May 18 2004
T(n,k) is the number of full binary trees with n+1 internal nodes and jump-length k. In the preorder traversal of a full binary tree, any transition from a node at a deeper level to a node on a strictly higher level is called a jump; the positive difference of the levels is called the jump distance; the sum of the jump distances in a given ordered tree is called the jump-length. - Emeric Deutsch, Jan 18 2007
The k-th diagonal from the right (k=1, 2, ...) gives the sequence obtained by asking in how many ways can we toss a fair coin until we first get k more heads than tails. The k-th diagonal has formula k(2m+k-1)!/(m!(m+k)!) and g.f. (C(x))^k where C(x) is the generating function for the Catalan numbers, (1-sqrt(1-4*x))/(2*x). - Anthony C Robin, Jul 12 2007
T(n,k) is also the number of order-decreasing and order-preserving full transformations (of an n-element chain) of waist k (waist (alpha) = max(Im(alpha))). - Abdullahi Umar, Aug 25 2008
Formatted as an upper right triangle (see tables) a(c,r) is the number of different triangulated planar polygons with c+2 vertices, with triangle degree c-r+1 for the same vertex X (c=column number, r=row number, with c >= r >= 1). - Patrick Labarque, Jul 28 2010
The triangle sums, see A180662 for their definitions, link Catalan's triangle, its mirror is A033184, with several sequences, see crossrefs. - Johannes W. Meijer, Sep 22 2010
The m-th row of Catalan's triangle consists of the unique nonnegative differences of the form binomial(m+k,m)-binomial(m+k,m+1) with 0 <= k <= m (See Links). - R. J. Cano, Jul 22 2014
T(n,k) is also the number of nondecreasing parking functions of length n+1 whose maximum element is k+1. For example T(3,2) = 5 because we have (1,1,1,3), (1,1,2,3), (1,2,2,3), (1,1,3,3), (1,2,3,3). - Ran Pan, Nov 16 2015
T(n,k) is the number of Dyck paths from (0,0) to (n+2,n+2) which start with n-k+2 east steps and touch the diagonal y=x only on the last north step. - Felipe Rueda, Sep 18 2019
T(n-1,k) for k < n is number of well-formed strings of n parenthesis pairs with prefix of exactly n-k opening parenthesis; T(n,n) = T(n,n-1). - Hermann Stamm-Wilbrandt, May 02 2021

Examples

			Triangle begins in row n=0 with 0 <= k <= n:
  1;
  1, 1;
  1, 2,  2;
  1, 3,  5,   5;
  1, 4,  9,  14,  14;
  1, 5, 14,  28,  42,   42;
  1, 6, 20,  48,  90,  132,  132;
  1, 7, 27,  75, 165,  297,  429,  429;
  1, 8, 35, 110, 275,  572, 1001, 1430, 1430;
  1, 9, 44, 154, 429, 1001, 2002, 3432, 4862, 4862;
		

References

  • William Feller, Introduction to Probability Theory and its Applications, vol. I, ed. 2, chap. 3, sect. 1,2.
  • Ki Hang Kim, Douglas G. Rogers, and Fred W. Roush, Similarity relations and semiorders. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 577-594, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561081 (81i:05013).
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6, Eq. 22, p. 451.
  • C. Krishnamachary and M. Bheemasena Rao, Determinants whose elements are Eulerian, prepared Bernoullian and other numbers, J. Indian Math. Soc., 14 (1922), 55-62, 122-138 and 143-146.
  • M. Bellon, Query 5467, L'Intermédiaire des Mathématiciens, 4 (1925), 11; H. Ory, 4 (1925), 120. - N. J. A. Sloane, Mar 09 2022
  • Andrzej Proskurowski and Ekaputra Laiman, Fast enumeration, ranking, and unranking of binary trees. Proceedings of the thirteenth Southeastern conference on combinatorics, graph theory and computing (Boca Raton, Fla., 1982). Congr. Numer. 35 (1982), 401-413.MR0725898 (85a:68152).
  • M. Welsch, Note #371, L'Intermédiaire des Mathématiciens, 2 (1895), pp. 235-237. - N. J. A. Sloane, Mar 02 2022

Crossrefs

The following are all versions of (essentially) the same Catalan triangle: A009766, A008315, A028364, A030237, A047072, A053121, A059365, A062103, A099039, A106566, A130020, A140344.
Sums of the shallow diagonals give A001405, central binomial coefficients: 1=1, 1=1, 1+1=2, 1+2=3, 1+3+2=6, 1+4+5=10, 1+5+9+5=20, ...
Row sums as well as the sums of the squares of the shallow diagonals give Catalan numbers (A000108).
Reflected version of A033184.
Triangle sums (see the comments): A000108 (Row1), A000957 (Row2), A001405 (Kn11), A014495 (Kn12), A194124 (Kn13), A030238 (Kn21), A000984 (Kn4), A000958 (Fi2), A165407 (Ca1), A026726 (Ca4), A081696 (Ze2).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],m->Binomial(n+m,n)*(n-m+1)/(n+1)))); # Muniru A Asiru, Feb 18 2018
    
  • Haskell
    a009766 n k = a009766_tabl !! n !! k
    a009766_row n = a009766_tabl !! n
    a009766_tabl = iterate (\row -> scanl1 (+) (row ++ [0])) [1]
    -- Reinhard Zumkeller, Jul 12 2012
    
  • Magma
    [[Binomial(n+k,n)*(n-k+1)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Mar 07 2019
    
  • Maple
    A009766 := proc(n,k) binomial(n+k,n)*(n-k+1)/(n+1); end proc:
    seq(seq(A009766(n,k), k=0..n), n=0..10); # R. J. Mathar, Dec 03 2010
  • Mathematica
    Flatten[NestList[Append[Accumulate[#], Last[Accumulate[#]]] &, {1}, 9]] (* Birkas Gyorgy, May 19 2012 *)
    T[n_, k_] := T[n, k] = Which[k == 0, 1, k>n, 0, True, T[n-1, k] + T[n, k-1] ]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 07 2016 *)
  • PARI
    {T(n, k) = if( k<0 || k>n, 0, binomial(n+1+k, k) * (n+1-k) / (n+1+k) )}; /* Michael Somos, Oct 17 2006 */
    
  • PARI
    b009766=(n1=0,n2=100)->{my(q=if(!n1,0,binomial(n1+1,2)));for(w=n1,n2,for(k=0,w,write("b009766.txt",1*q" "1*(binomial(w+k,w)-binomial(w+k,w+1)));q++))} \\ R. J. Cano, Jul 22 2014
    
  • Python
    from math import comb, isqrt
    def A009766(n): return comb((a:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)))+(b:=n-comb(a+1,2)),b)*(a-b+1)//(a+1) # Chai Wah Wu, Nov 12 2024
  • Sage
    @CachedFunction
    def ballot(p,q):
        if p == 0 and q == 0: return 1
        if p < 0 or p > q: return 0
        S = ballot(p-2, q) + ballot(p, q-2)
        if q % 2 == 1: S += ballot(p-1, q-1)
        return S
    A009766 = lambda n, k: ballot(2*k, 2*n)
    for n in (0..7): [A009766(n, k) for k in (0..n)]  # Peter Luschny, Mar 05 2014
    
  • Sage
    [[binomial(n+k,n)*(n-k+1)/(n+1) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Mar 07 2019
    

Formula

T(n, m) = binomial(n+m, n)*(n-m+1)/(n+1), 0 <= m <= n.
G.f. for column m: (x^m)*N(2; m-1, x)/(1-x)^(m+1), m >= 0, with the row polynomials from triangle A062991 and N(2; -1, x) := 1.
G.f.: C(t*x)/(1-x*C(t*x)) = 1 + (1+t)*x + (1+2*t+2*t^2)*x^2 + ..., where C(x) = (1-sqrt(1-4*x))/(2*x) is the Catalan function. - Emeric Deutsch, May 18 2004
Another version of triangle T(n, k) given by [1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 1, 1, 1, 1, 1, ...] = 1; 1, 0; 1, 1, 0; 1, 2, 2, 0; 1, 3, 5, 5, 0; 1, 4, 9, 14, 14, 0; ... where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 16 2005
O.g.f. (with offset 1) is the series reversion of x*(1+x*(1-t))/(1+x)^2 = x - x^2*(1+t) + x^3*(1+2*t) - x^4*(1+3*t) + ... . - Peter Bala, Jul 15 2012
Sum_{k=0..floor(n/2)} T(n-k+p-1, k+p-1) = A001405(n+2*p-2) - C(n+2*p-2, p-2), p >= 1. - Johannes W. Meijer, Oct 03 2013
Let A(x,t) denote the o.g.f. Then 1 + x*d/dx(A(x,t))/A(x,t) = 1 + (1 + t)*x + (1 + 2*t + 3*t^2)*x^2 + (1 + 3*t + 6*t^2 + 10*t^3)*x^3 + ... is the o.g.f. for A059481. - Peter Bala, Jul 21 2015
The n-th row polynomial equals the n-th degree Taylor polynomial of the function (1 - 2*x)/(1 - x)^(n+2) about 0. For example, for n = 4, (1 - 2*x)/(1 - x)^6 = 1 + 4*x + 9*x^2 + 14*x^3 + 14*x^4 + O(x^5). - Peter Bala, Feb 18 2018
T(n,k) = binomial(n + k + 1, k) - 2*binomial(n + k, k - 1), for 0 <= k <= n. - David Callan, Jun 15 2022

A289780 p-INVERT of the positive integers (A000027), where p(S) = 1 - S - S^2.

Original entry on oeis.org

1, 4, 14, 47, 156, 517, 1714, 5684, 18851, 62520, 207349, 687676, 2280686, 7563923, 25085844, 83197513, 275925586, 915110636, 3034975799, 10065534960, 33382471801, 110713382644, 367182309614, 1217764693607, 4038731742156, 13394504020957, 44423039068114
Offset: 0

Views

Author

Clark Kimberling, Aug 10 2017

Keywords

Comments

Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x).
Taking p(S) = 1 - S gives the INVERT transform of s, so that p-INVERT is a generalization of the INVERT transform (e.g., A033453).
Guide to p-INVERT sequences using p(S) = 1 - S - S^2:
t(A000012) = t(1,1,1,1,1,1,1,...) = A001906
t(A000290) = t(1,4,9,16,25,36,...) = A289779
t(A000027) = t(1,2,3,4,5,6,7,8,...) = A289780
t(A000045) = t(1,2,3,5,8,13,21,...) = A289781
t(A000032) = t(2,1,3,4,7,11,14,...) = A289782
t(A000244) = t(1,3,9,27,81,243,...) = A289783
t(A000302) = t(1,4,16,64,256,...) = A289784
t(A000351) = t(1,5,25,125,625,...) = A289785
t(A005408) = t(1,3,5,7,9,11,13,...) = A289786
t(A005843) = t(2,4,6,8,10,12,14,...) = A289787
t(A016777) = t(1,4,7,10,13,16,...) = A289789
t(A016789) = t(2,5,8,11,14,17,...) = A289790
t(A008585) = t(3,6,9,12,15,18,...) = A289795
t(A000217) = t(1,3,6,10,15,21,...) = A289797
t(A000225) = t(1,3,7,15,31,63,...) = A289798
t(A000578) = t(1,8,27,64,625,...) = A289799
t(A000984) = t(1,2,6,20,70,252,...) = A289800
t(A000292) = t(1,4,10,20,35,56,...) = A289801
t(A002620) = t(1,2,4,6,9,12,16,...) = A289802
t(A001906) = t(1,3,8,21,55,144,...) = A289803
t(A001519) = t(1,1,2,5,13,34,...) = A289804
t(A103889) = t(2,1,4,3,6,5,8,7,,...) = A289805
t(A008619) = t(1,1,2,2,3,3,4,4,...) = A289806
t(A080513) = t(1,2,2,3,3,4,4,5,...) = A289807
t(A133622) = t(1,2,1,3,1,4,1,5,...) = A289809
t(A000108) = t(1,1,2,5,14,42,...) = A081696
t(A081696) = t(1,1,3,9,29,97,...) = A289810
t(A027656) = t(1,0,2,0,3,0,4,0,5...) = A289843
t(A175676) = t(1,0,0,2,0,0,3,0,...) = A289844
t(A079977) = t(1,0,1,0,2,0,3,...) = A289845
t(A059841) = t(1,0,1,0,1,0,1,...) = A289846
t(A000040) = t(2,3,5,7,11,13,...) = A289847
t(A008578) = t(1,2,3,5,7,11,13,...) = A289828
t(A000142) = t(1!, 2!, 3!, 4!, ...) = A289924
t(A000201) = t(1,3,4,6,8,9,11,...) = A289925
t(A001950) = t(2,5,7,10,13,15,...) = A289926
t(A014217) = t(1,2,4,6,11,17,29,...) = A289927
t(A000045*) = t(0,1,1,2,3,5,...) = A289975 (* indicates prepended 0's)
t(A000045*) = t(0,0,1,1,2,3,5,...) = A289976
t(A000045*) = t(0,0,0,1,1,2,3,5,...) = A289977
t(A290990*) = t(0,1,2,3,4,5,...) = A290990
t(A290990*) = t(0,0,1,2,3,4,5,...) = A290991
t(A290990*) = t(0,0,01,2,3,4,5,...) = A290992

Examples

			Example 1:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S.
S(x) = x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - (x + 2x^2 + 3x^3 + 4x^4 + ... )
- p(0) + 1/p(S(x)) = -1 + 1 + x + 3x^2 + 8x^3 + 21x^4 + ...
T(x) = 1 + 3x + 8x^2 + 21x^3 + ...
t(s) = (1,3,8,21,...) = A001906.
***
Example 2:  s = (1,2,3,4,5,6,...) = A000027 and p(S) = 1 - S - S^2.
S(x) =  x + 2x^2 + 3x^3 + 4x^4 + ...
p(S(x)) = 1 - ( x + 2x^2 + 3x^3 + 4x^4 + ...) - ( x + 2x^2 + 3x^3 + 4x^4 + ...)^2
- p(0) + 1/p(S(x)) = -1 + 1 + x + 4x^2 + 14x^3 + 47x^4 + ...
T(x) = 1 + 4x + 14x^2 + 47x^3 + ...
t(s) = (1,4,14,47,...) = A289780.
		

Crossrefs

Cf. A000027.

Programs

  • GAP
    P:=[1,4,14,47];; for n in [5..10^2] do P[n]:=5*P[n-1]-7*P[n-2]+5*P[n-3]-P[n-4]; od; P; # Muniru A Asiru, Sep 03 2017
  • Mathematica
    z = 60; s = x/(1 - x)^2; p = 1 - s - s^2;
    Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000027 *)
    Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A289780 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(1-5*x+7*x^2-5*x^3+x^4)) \\ Altug Alkan, Aug 13 2017
    

Formula

G.f.: (1 - x + x^2)/(1 - 5 x + 7 x^2 - 5 x^3 + x^4).
a(n) = 5*a(n-1) - 7*a(n-2) + 5*a(n-3) - a(n-4).

A109262 A Catalan transform of the Fibonacci numbers.

Original entry on oeis.org

0, 1, 2, 6, 19, 63, 215, 749, 2650, 9490, 34318, 125104, 459152, 1694914, 6287896, 23429158, 87635243, 328917615, 1238303243, 4674847097, 17692789741, 67114622451, 255120892105, 971649360211, 3707176155659, 14167390221873
Offset: 0

Views

Author

Paul Barry, Jun 24 2005

Keywords

Comments

A column of A109267.
Hankel transform is -Fibonacci(2*n). a(n+1) has Hankel transform Fibonacci(2*n+1). - Paul Barry, Nov 22 2007

Crossrefs

Programs

  • Magma
    [n eq 0 select 0 else (&+[k*Binomial(2*n-k-1,n-1)*Fibonacci(k): k in [0..n]])/n: n in [0..30]]; // G. C. Greubel, May 30 2022
    
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-4*x])/(2*(Sqrt[1-4*x]+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • SageMath
    [0]+[(1/n)*sum(k*binomial(2*n-k-1, n-1)*fibonacci(k) for k in (1..n)) for n in (1..30)] # G. C. Greubel, May 30 2022

Formula

G.f.: x*c(x)/(1 - x*c(x) - x^2*c(x)^2) = (1 - sqrt(1-4*x))/(2*(x + sqrt(1-4*x))) where c(x) is the g.f. of A000108.
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*Fibonacci(k).
a(n) = Sum_{k=0..n} A106566(n,k)*A000045(k). - Philippe Deléham, Oct 28 2008
a(n) = Sum_{k=0..n} A039599(n,k)*(-1)^(k+1)*A000045(k). - Philippe Deléham, Oct 28 2008
n*a(n) - (7*n-4)*a(n-1) + (7*n-2)*a(n-2) + (19*n-60)*a(n-3) + 2*(2*n-7)*a(n-4) = 0. - R. J. Mathar, Nov 26 2012
Recurrence: n*(5*n-11)*a(n) = 2*(20*n^2 - 59*n + 30)*a(n-1) - 15*(5*n^2 - 19*n + 16)*a(n-2) - 2*(2*n-5)*(5*n-6)*a(n-3). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ 5*4^n/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Feb 13 2014
a(n) = (1/(2*sqrt(5)))*Catalan(n-1)*Sum_{j=0..1} ((-1)^j + sqrt(5)) * Hypergeometric2F1([2,1-n], [2*(1-n)], (1+(-1)^j*sqrt(5))/2). - G. C. Greubel, May 30 2022

A101850 A Catalan transform of Pell(n+1).

Original entry on oeis.org

1, 2, 7, 26, 100, 392, 1555, 6218, 25006, 100988, 409162, 1661948, 6764194, 27575732, 112570675, 460058906, 1881978694, 7704907724, 31566153058, 129400608044, 530734613920, 2177792579072, 8939838222718, 36711025334948
Offset: 0

Views

Author

Paul Barry, Dec 18 2004

Keywords

Comments

A Catalan transform of the Pell numbers A000129(n+1) under the mapping G(x) -> G(x*c(x)), c(x) the g.f. of A000108. The inverse mapping is H(x) -> H(x*(1-x)).
Hankel transform is 3^n. - Paul Barry, Jan 19 2009
Row sums of the Riordan matrix (1/(x+sqrt(1-4*x)),(1-sqrt(1-4*x))/(2*(x+sqrt(1-4*x)))) (A188513). - Emanuele Munarini, Apr 02 2011
Equals the INVERT transform of A026641: (1, 1, 4, 13, 46, 166, ...). Example: a(4) = 100 = (1, 1, 2, 7, 26) dot (46, 13, 4, 1, 1) = (46 + 13 + 8 + 7 + 26 ) = 100. - Gary W. Adamson, Jan 10 2012

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( 2/(3*Sqrt(1-4*x)+2*x-1) )); // G. C. Greubel, Feb 18 2019
    
  • Mathematica
    CoefficientList[Series[(1-2x+3Sqrt[1-4x])/(4-16x-2x^2),{x,0,24}],x] (* Emanuele Munarini, Apr 02 2011 *)
    CoefficientList[Series[2/(3*Sqrt[1-4*x]+2*x-1), {x,0,30}], x] (* or *) RecurrenceTable[{2*(n+3)*a[n+3] -4*(4*n+9)*a[n+2]+(31*n+45)*a[n+1] + 2*(2*n+3)*a[n]==0, a[0]==1, a[1]==2, a[2]==7}, a, {n, 0, 30}](* G. C. Greubel, Feb 18 2019 *)
  • Maxima
    makelist(sum(binomial(2*n+1,n+2*k+1)*2^(k+1)*(2*k+1)/(n+2*k+2),k,0,n),n,0,12); /* Emanuele Munarini, Apr 02 2011 */
    
  • PARI
    my(x='x+O('x^30)); Vec(2/(3*sqrt(1-4*x)+2*x-1)) \\ G. C. Greubel, Feb 18 2019
    
  • Sage
    (2/(3*sqrt(1-4*x)+2*x-1)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 18 2019

Formula

G.f.: 2/(3*sqrt(1-4*x) + 2*x - 1).
a(n) = Sum_{k=0..n} (k/(2*n-k))*binomial(2*n-k, n-k)*A000129(k+1).
a(n) = Sum_{k=0..n} A039599(n,k)*A016116(k). - Philippe Deléham, Oct 29 2008
G.f.: 1/(1-2*x-3*x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-2*x-x^2/(1-... (continued fraction). - Paul Barry, Jan 19 2009
From Emanuele Munarini, Apr 02 2011: (Start)
a(n) = [x^n] (1-2*x)/((1-2*x-x^2)(1-x)^(n+1)).
a(n) = Sum_{k=0..n} binomial(2*n+1, n+2*k+1)*2^(k+1)*(2*k+1)/(n+2*k+2).
Recurrence: 2*(n+3)*a(n+3) -4*(4*n+9)*a(n+2) +(31*n+45)*a(n+1) +2*(2*n+3)*a(n) = 0. (End)
From Gary W. Adamson, Jul 14 2011: (Start)
a(n) = the upper left term in M^n, M = an infinite square production matrix as follows:
2, 3, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
a(n) ~ (1/4)*(2 + 3/sqrt(2))^n. - Vaclav Kotesovec, Oct 17 2012

A109267 Riordan array (1/(1 - x*c(x) - x^2*c(x)^2), x*c(x)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 9, 6, 3, 1, 29, 19, 10, 4, 1, 97, 63, 34, 15, 5, 1, 333, 215, 118, 55, 21, 6, 1, 1165, 749, 416, 201, 83, 28, 7, 1, 4135, 2650, 1485, 736, 320, 119, 36, 8, 1, 14845, 9490, 5355, 2705, 1220, 484, 164, 45, 9, 1, 53791, 34318, 19473, 9983, 4628, 1923, 703, 219, 55, 10, 1
Offset: 0

Views

Author

Paul Barry, Jun 24 2005

Keywords

Comments

Inverse of Riordan array (1-x-x^2, x(1-x)), A109264. Row sums are A109262(n+1). Diagonal sums are A109268. Columns include A081696, A109262, A109263.

Examples

			Rows begin
   1;
   1,  1;
   3,  2,  1;
   9,  6,  3,  1;
  29, 19, 10,  4,  1;
  97, 63, 34, 15,  5,  1;
		

Crossrefs

Row sums A109262, sums along shallow diagonals A109268, A081696 (column 0), A109262 (column 1), A109263 (column 2).

Programs

  • GAP
    Flat(List([0..10],n->List([0..n],k->Sum([0..n-k],i->(Fibonacci(i+1)-2*Fibonacci(i))*Binomial(2*n-k-i,n))))); # Muniru A Asiru, Feb 19 2018
  • Maple
    A109267 := (n,k) -> add(-combinat:-fibonacci(i-2)*binomial(2*n-k-i,n), i=0..n-k):
    seq(seq(A109267(n, k), k = 0..n), n = 0..10); # Peter Bala, Feb 18 2018
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    c[x_] := (1 - Sqrt[1 - 4 x])/(2 x);
    RiordanArray[1/(1 - # c[#] - #^2 c[#]^2)&, # c[#]&, 11] // Flatten (* Jean-François Alcover, Jul 16 2019 *)

Formula

The production matrix M (deleting the zeros) is:
1, 1;
2, 1, 1;
2, 1, 1, 1;
2, 1, 1, 1, 1;
... such that the n-th row of the triangle is the top row of M^n. - Gary W. Adamson, Feb 16 2012
From Peter Bala, Feb 18 2018: (Start)
T(n,k) = Sum_{i = 0..n-k} (Fibonacci(i+1) - 2*Fibonacci(i))* binomial(2*n-k-i,n), 0 <= k <= n.
The n-th row polynomial of the row reverse triangle equals the n-th degree Taylor polynomial of the function (1 - 2*x)/((1 - x)*(1 - x - x^2)) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 2*x)/((1 - x)*(1 - x - x^2)) * 1/(1 - x)^4 = 1 + 4*x + 10*x^2 + 19*x^3 + 29*x^4 + O(x^5), giving (29, 19, 10, 4, 1) as row 4. (End)

A084868 Main diagonal of symmetric square table A084867, in which the antidiagonal sums (A006012) form the first row shifted left.

Original entry on oeis.org

1, 2, 8, 36, 168, 796, 3800, 18216, 87536, 421292, 2029592, 9784088, 47187536, 227651352, 1098523504, 5301727824, 25590307552, 123529362124, 596337248024, 2878947861432, 13899229883024, 67105641925064, 323993230750672
Offset: 0

Views

Author

Paul D. Hanna, Jun 10 2003, Jun 11 2003

Keywords

Comments

The Hankel transform (see A001906 for definition) of this sequence is A000302 (powers of 4): 1, 4, 16, 64, 256, 1024, ... - Philippe Deléham, Aug 17 2005

Examples

			1 + 2*x + 8*x^2 + 36*x^3 + 168*x^4 + 796*x^5 + 3800*x^6 + 18216*x^7 + ...
		

Crossrefs

Programs

  • Maple
    1/(1-x/(sqrt(1/4-x))): series(%,x,23): seq(coeff(%,x,n),n=0..22); # Peter Luschny, Feb 06 2017
  • Mathematica
    Table[SeriesCoefficient[((1-4*x)+2*x*Sqrt[1-4*x])/(1-4*x-4*x^2),{x,0,n}],{n,0,20}] (* Vaclav Kotesovec, Oct 14 2012 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff((1 - 4*x + 2*x * sqrt(1 - 4*x + x * O(x^n))) /(1 - 4*x - 4*x^2), n))} /* Michael Somos, Jan 05 2012 */

Formula

Differential equation: (16*x^3 + 12*x^2 - 8*x + 1) * x*(d/dx)A(x) + (8x^3 - 12*x^2 + 6*x - 1) * A(x) + (8x^2 - 6*x + 1) = 0.
G.f.: ((1 - 4*x) + 2*x * sqrt(1 - 4*x)) / (1 - 4*x - 4*x^2). a(n) * (n-1) = a(n-1) * (8*n - 14) - a(n-2) * 12*(n-3) - a(n-3) * 8*(2*n - 5), n > 2. Hankel number wall zig-zag diagonal is A011782. - Michael Somos, Sep 14 2003
INVERT transform of A028329 (offset 1). - Michael Somos, Jan 05 2012
G.f.: (1-2*x*f(x))/(1-2*x*f(x)-2*x) where f(x) is the g.f. of A000108 (Catalan numbers). - Philippe Deléham, Jan 30 2012
a(n) ~ (1-1/sqrt(2))*(2+2*sqrt(2))^n. - Vaclav Kotesovec, Oct 14 2012
From Peter Bala, Feb 05 2017: (Start)
G.f: sqrt(1 - 4*x)/(sqrt(1 - 4*x) - 2*x) = 1/(1 - 2*x/(1 - 2*x/(1 - x/(1 - x/(1 - x/(1 - ...)))))) (continued fraction). Cf. A026671, A081696.
Catalan transform of A006012, that is, equals A106566*A006012, as noted by R. J. Mathar. (End)

A176085 a(n) = A136431(n,n).

Original entry on oeis.org

0, 1, 3, 11, 41, 155, 591, 2267, 8735, 33775, 130965, 509015, 1982269, 7732659, 30208749, 118167055, 462760369, 1814091011, 7118044023, 27952660883, 109853552255, 432021606103, 1700093447847, 6694137523051, 26372544576331, 103950885100775, 409928481296331
Offset: 0

Views

Author

Paul Curtz, Apr 08 2010

Keywords

Comments

a(n+1) is also the number of sequences of length 2n obeying the regular expression "0^* (1 or 2)^* 3^*" and having sum 3n. For example, a(3)=11 because of the sequences 0033, 0123, 0213, 0222, 1113, 1122, 1212, 1221, 2112, 2121, 2211. - Don Knuth, May 11 2016

Crossrefs

Programs

  • GAP
    List([0..30], n-> Sum([0..n], k-> Binomial(2*n-k-1, n-k)*Fibonacci(k) )); # G. C. Greubel, Nov 28 2019
  • Magma
    [(&+[Binomial(2*n-k-1, n-k)*Fibonacci(k): k in [0..n]]): n in [0..30]]; // G. C. Greubel, Nov 28 2019
    
  • Maple
    with(combinat); seq( add(binomial(2*n-k-1, n-k)*fibonacci(k), k=0..n), n=0..30); # G. C. Greubel, Nov 28 2019
    1/(sqrt(1 - 4*x) + 1/x - 4): series(%, x, 27):
    seq(coeff(%, x, k), k=0..26); # Peter Luschny, May 29 2021
  • Mathematica
    t[n_, k_]:= CoefficientList[ Series[x/(1-x-x^2)/(1-x)^k, {x,0,k}], x][[k+1]]; Array[ t[#, #] &, 20]
    Table[Sum[Binomial[2*n-k-1, n-k]*Fibonacci[k], {k,0,n}], {n,0,30}] (* G. C. Greubel, Nov 28 2019 *)
  • Maxima
    a(n):=sum(fib(k)*binomial(2*n-k-1,n-k),k,1,n); /*  Vladimir Kruchinin, Mar 17 2016 */
    
  • PARI
    a(n) = sum(k=1, n, fibonacci(k)*binomial(2*n-k-1, n-k)) \\ Michel Marcus, Mar 17 2016
    
  • Sage
    [sum(binomial(2*n-k-1, n-k)*fibonacci(k) for k in (0..n)) for n in (0..30)] # G. C. Greubel, Nov 28 2019
    

Formula

a(n+1) - 4*a(n) = -A081696(n-1).
From Vaclav Kotesovec, Oct 21 2012: (Start)
G.f.: x*(x-sqrt(1-4*x))/(sqrt(1-4*x)*(x^2+4*x-1)).
Recurrence: (n-2)*a(n) = 2*(4*n-9)*a(n-1) - (15*n-38)*a(n-2) - 2*(2*n-5)* a(n-3).
a(n) ~ 4^n/sqrt(Pi*n). (End)
a(n) = Sum_{k=1..n} (F(k)*binomial(2*n-k-1,n-k)), where F(k) = A000045(k). - Vladimir Kruchinin, Mar 17 2016
Simpler g.f.: x/sqrt(1-4*x)/(x+sqrt(1-4*x)). - Don Knuth, May 11 2016
a(n) = A000045(3*n) - A054441(n). - Hrishikesh Venkataraman, May 27 2021
a(n) = 4*a(n-1) + a(n-2) - binomial(2*n-4,n-2) for n>=2. - Hrishikesh Venkataraman, Jul 02 2021
a(n) = A108617(2n,n)/2. - Alois P. Heinz, Jan 26 2025
Showing 1-10 of 17 results. Next