cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 1127 results. Next

A060165 Number of orbits of length n under the map whose periodic points are counted by A000984.

Original entry on oeis.org

2, 2, 6, 16, 50, 150, 490, 1600, 5400, 18450, 64130, 225264, 800046, 2865226, 10341150, 37566720, 137270954, 504171432, 1860277042, 6892317200, 25631327190, 95640829922, 357975249026, 1343650040256, 5056424257500, 19073789328750, 72108867614796
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A000984 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.
The number of n-cycles in the graph of overlapping m-permutations where n <= m. - Richard Ehrenborg, Dec 10 2013
a(n) is divisible by n (cf. A268619), 6*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016
Apparently the number of Lyndon words of length n with a 4-letter alphabet (see A027377) where the first letter of the alphabet appears with the same frequency as the second of the alphabet. E.g a(1)=2 counts the words (2), (3), a(2)= 2 counts (01) (23), a(3)=6 counts (021) (031) (012) (013) (223) (233). R. J. Mathar, Nov 04 2021

Examples

			a(5) = 50 because if a map has A000984 as its periodic points, then it would have 2 fixed points and 252 points of period 5, hence 50 orbits of length 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/n:
    seq(a(n), n=1..30); # Alois P. Heinz, Dec 10 2013
  • Mathematica
    a[n_] := (1/n)*Sum[MoebiusMu[d]*Binomial[2*n/d, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 16 2015 *)
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)*binomial(2*d,d))/n \\ Charles R Greathouse IV, Dec 10 2013
    
  • Python
    from sympy import mobius, binomial, divisors
    def a(n): return sum(mobius(n//d) * binomial(2*d, d) for d in divisors(n))//n
    print([a(n) for n in range(1, 31)])  # Indranil Ghosh, Jul 24 2017

Formula

a(n) = (1/n) * Sum_{d|n} mu(d) A000984(n/d) with mu = A008683.
a(n) = 2*A022553(n).
a(n) = A007727(n)/n. - R. J. Mathar, Jul 24 2017
G.f.: 2 * Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019
a(n) ~ 4^n / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 04 2022

A054335 A convolution triangle of numbers based on A000984 (central binomial coefficients of even order).

Original entry on oeis.org

1, 2, 1, 6, 4, 1, 20, 16, 6, 1, 70, 64, 30, 8, 1, 252, 256, 140, 48, 10, 1, 924, 1024, 630, 256, 70, 12, 1, 3432, 4096, 2772, 1280, 420, 96, 14, 1, 12870, 16384, 12012, 6144, 2310, 640, 126, 16, 1, 48620, 65536, 51480, 28672, 12012, 3840, 924, 160, 18, 1
Offset: 0

Views

Author

Wolfdieter Lang, Mar 13 2000

Keywords

Comments

In the language of the Shapiro et al. reference (given in A053121) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group. The g.f. for the row polynomials p(n,x) (increasing powers of x) is 1/(sqrt(1-4*z)-x*z).
Riordan array (1/sqrt(1-4*x),x/sqrt(1-4*x)). - Paul Barry, May 06 2009
The matrix inverse is apparently given by deleting the leftmost column from A206022. - R. J. Mathar, Mar 12 2013

Examples

			Triangle begins:
    1;
    2,    1;
    6,    4,   1;
   20,   16,   6,   1;
   70,   64,  30,   8,  1;
  252,  256, 140,  48, 10,  1;
  924, 1024, 630, 256, 70, 12, 1; ...
Fourth row polynomial (n=3): p(3,x) = 20 + 16*x + 6*x^2 + x^3.
From _Paul Barry_, May 06 2009: (Start)
Production matrix begins
    2,   1;
    2,   2,  1;
    0,   2,  2,  1;
   -2,   0,  2,  2,  1;
    0,  -2,  0,  2,  2,  1;
    4,   0, -2,  0,  2,  2, 1;
    0,   4,  0, -2,  0,  2, 2, 1;
  -10,   0,  4,  0, -2,  0, 2, 2, 1;
    0, -10,  0,  4,  0, -2, 0, 2, 2, 1; (End)
		

Crossrefs

Row sums: A026671.

Programs

  • GAP
    T:= function(n, k)
        if k mod 2=0 then return Binomial(2*n-k, n-Int(k/2))*Binomial(n-Int(k/2),Int(k/2))/Binomial(k,Int(k/2));
        else return 4^(n-k)*Binomial(n-Int((k-1)/2)-1, Int((k-1)/2));
        fi;
      end;
    Flat(List([0..10], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 20 2019
  • Magma
    T:= func< n, k | (k mod 2) eq 0 select Binomial(2*n-k, n-Floor(k/2))* Binomial(n-Floor(k/2),Floor(k/2))/Binomial(k,Floor(k/2)) else 4^(n-k)*Binomial(n-Floor((k-1)/2)-1, Floor((k-1)/2)) >;
    [[T(n,k): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Jul 20 2019
    
  • Maple
    A054335 := proc(n,k)
        if k <0 or k > n then
            0 ;
        elif type(k,odd) then
            kprime := floor(k/2) ;
            binomial(n-kprime-1,kprime)*4^(n-k) ;
        else
            kprime := k/2 ;
            binomial(2*n-k,n-kprime)*binomial(n-kprime,kprime)/binomial(k,kprime) ;
        end if;
    end proc: # R. J. Mathar, Mar 12 2013
    # Uses function PMatrix from A357368. Adds column 1,0,0,0,... to the left.
    PMatrix(10, n -> binomial(2*(n-1), n-1)); # Peter Luschny, Oct 19 2022
  • Mathematica
    Flatten[ CoefficientList[#1, x] & /@ CoefficientList[ Series[1/(Sqrt[1 - 4*z] - x*z), {z, 0, 9}], z]] (* or *)
    a[n_, k_?OddQ] := 4^(n-k)*Binomial[(2*n-k-1)/2, (k-1)/2]; a[n_, k_?EvenQ] := (Binomial[n-k/2, k/2]*Binomial[2*n-k, n-k/2])/Binomial[k, k/2]; Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 08 2011, updated Jan 16 2014 *)
  • PARI
    T(n, k) = if(k%2==0, binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2), 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2));
    for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Jul 20 2019
    
  • Sage
    def T(n, k):
        if (mod(k,2)==0): return binomial(2*n-k, n-k/2)*binomial(n-k/2,k/2)/binomial(k,k/2)
        else: return 4^(n-k)*binomial(n-(k-1)/2-1, (k-1)/2)
    [[T(n,k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Jul 20 2019
    

Formula

a(n, 2*k+1) = binomial(n-k-1, k)*4^(n-2*k-1), a(n, 2*k) = binomial(2*(n-k), n-k)*binomial(n-k, k)/binomial(2*k, k), k >= 0, n >= m >= 0; a(n, m) := 0 if n
Column recursion: a(n, m)=2*(2*n-m-1)*a(n-1, m)/(n-m), n>m >= 0, a(m, m) := 1.
G.f. for column m: cbie(x)*(x*cbie(x))^m, with cbie(x) := 1/sqrt(1-4*x).
G.f.: 1/(1-x*y-2*x/(1-x/(1-x/(1-x/(1-x/(1-... (continued fraction). - Paul Barry, May 06 2009
Sum_{k>=0} T(n,2*k)*(-1)^k*A000108(k) = A000108(n+1). - Philippe Deléham, Jan 30 2012
Sum_{k=0..floor(n/2)} T(n-k,n-2*k) = A098615(n). - Philippe Deléham, Feb 01 2012
T(n,k) = 4*T(n-1,k) + T(n-2,k-2) for k>=1. - Philippe Deléham, Feb 02 2012
Vertical recurrence: T(n,k) = 1*T(n-1,k-1) + 2*T(n-2,k-1) + 6*T(n-3,k-1) + 20*T(n-4,k-1) + ... for k >= 1 (the coefficients 1, 2, 6, 20, ... are the central binomial coefficients A000984). - Peter Bala, Oct 17 2015

A232606 G.f. A(x) satisfies: the sum of the coefficients of x^k, k=0..n, in A(x)^n equals (2*n)!^2/n!^4, the square of the central binomial coefficients (A000984), for n>=0.

Original entry on oeis.org

1, 3, 10, 42, 221, 1379, 9678, 73666, 594326, 5007958, 43641702, 390632678, 3573598539, 33289289533, 314871186248, 3017358158132, 29242725947318, 286209134234602, 2825613061237808, 28111283170770480, 281598654896870051, 2838309465080014489, 28767973963085929656, 293059625830028920012
Offset: 0

Author

Paul D. Hanna, Nov 26 2013

Keywords

Comments

Compare to: Sum_{k=0..n} [x^k] 1/(1-x)^n = (2*n)!/n!^2 = A000984(n).
a(n+1)/a(n) tends to 11.3035... - Vaclav Kotesovec, Jan 23 2014

Examples

			G.f.: A(x) = 1 + 3*x + 10*x^2 + 42*x^3 + 221*x^4 + 1379*x^5 + 9678*x^6 +...
ILLUSTRATION OF INITIAL TERMS.
If we form an array of coefficients of x^k in A(x)^n, n>=0, like so:
A^0: [1], 0,   0,    0,     0,      0,       0,        0,         0, ...;
A^1: [1,  3], 10,   42,   221,   1379,    9678,    73666,    594326, ...;
A^2: [1,  6,  29], 144,   794,   4924,   33814,   251544,   1988885, ...;
A^3: [1,  9,  57,  333], 1989,  12669,   86935,   639123,   4979499, ...;
A^4: [1, 12,  94,  636,  4157], 27728,  193504,  1423120,  11006058, ...;
A^5: [1, 15, 140, 1080,  7730,  54538], 391970,  2915490,  22558825, ...;
A^6: [1, 18, 195, 1692, 13221,  99102,  739547], 5612016,  43767477, ...;
A^7: [1, 21, 259, 2499, 21224, 169232, 1317722, 10267666], 81223912, ...;
A^8: [1, 24, 332, 3528, 32414, 274792, 2238492, 17990904, 145096413], ...; ...
then the sum of the coefficients of x^k, k=0..n, in A(x)^n (shown above in brackets) equals the square of the central binomial coefficients:
1^1 = 1;
2^2 = 1 + 3;
6^2 = 1 +  6 +  29;
20^2 = 1 +  9 +  57 +  333;
70^2 = 1 + 12 +  94 +  636 +  4157;
252^2 = 1 + 15 + 140 + 1080 +  7730 +  54538;
924^2 = 1 + 18 + 195 + 1692 + 13221 +  99102 +  739547;
3432^2 = 1 + 21 + 259 + 2499 + 21224 + 169232 + 1317722 + 10267666; ...
RELATED SERIES.
From a main diagonal in the above array we can derive sequence A232607:
[1/1, 6/2, 57/3, 636/4, 7730/5, 99102/6, 1317722/7, 17990904/8, ...] =
[1, 3, 19, 159, 1546, 16517, 188246, 2248863, 27844369, 354576634, ...];
from which we can form the series G(x) = A(x*G(x)):
G(x) = 1 + 3*x + 19*x^2 + 159*x^3 + 1546*x^4 + 16517*x^5 + 188246*x^6 +...
such that
(G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = 1 + 2^2*x + 6^2*x^2 + 20^2*x^3 + 70^2*x^4 + 252^2*x^5 +...+ A000984(n)^2*x^n +...
		

Crossrefs

Programs

  • Mathematica
    terms = 24; a[0] = 1; A[x_] = Sum[a[n]*x^n, {n, 0, terms - 1}];
    c[n_] := Sum[Coefficient[B[x], x, k], {k, 0, n}] == (2*n)!^2/n!^4 // Solve // First;
    Do[B[x_] = A[x]^n + O[x]^(n+1) // Normal; A[x_] = (A[x] /. c[n]) + O[x]^terms, {n, 0, terms-1}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Jan 14 2018 *)
  • PARI
    /* By Definition: */
    {a(n)=if(n==0, 1, ((2*n)!^2/n!^4 - sum(k=0, n, polcoeff(sum(j=0, min(k, n-1), a(j)*x^j)^n + x*O(x^k), k)))/n)}
    for(n=0,20,print1(a(n)*1!,", "))
    
  • PARI
    /* Faster, using series reversion: */
    {a(n)=local(CB2=sum(k=0,n,binomial(2*k,k)^2*x^k)+x*O(x^n), G=1+x*O(x^n));
    for(i=1,n,G = 1 + intformal( (CB2-1)*G/x - CB2*G^2));polcoeff(x/serreverse(x*G),n)}
    for(n=0,30,print1(a(n),", "))

Formula

Given g.f. A(x), Sum_{k=0..n} [x^k] A(x)^n = (2*n)!^2/n!^4 = A000984(n)^2.
Given g.f. A(x), let G(x) = A(x*G(x)) then (G(x) + x*G'(x)) / (G(x) - x*G(x)^2) = Sum_{n>=0} (2*n)!^2/n!^4 * x^n.

A187364 Trisection of A000984 (central binomial coefficients): binomial(2(3n+1),3n+1)/2, n>=0.

Original entry on oeis.org

1, 35, 1716, 92378, 5200300, 300540195, 17672631900, 1052049481860, 63205303218876, 3824345300380220, 232714176627630544, 14226520737620288370, 873065282167813104916, 53753604366668088230810, 3318776542511877736535400, 205397724721029574666088520
Offset: 0

Author

Wolfdieter Lang, Mar 10 2011

Keywords

Comments

See a comment under A187363 concerning trisection.
This appears also in the trisection of A001700 (central binomials in the odd numbered Pascal rows): binomial(2*(3*n)+1,3*n+1).

Crossrefs

Cf. A066802 (binomial(6n,3n)), A187365 (binomial(2(3n+2),3n+2)/3!).

Programs

  • Mathematica
    Table[c=3n+1;Binomial[2c,c]/2,{n,0,20}] (* Harvey P. Dale, May 10 2012 *)

Formula

a(n) = binomial(2*(3*n+1),3*n+1)/2, n>=0.
a(n) = binomial(2*(3*n)+1,3*n+1), n>=0.
O.g.f.: (cb(x^(1/3)) - sqrt(2)*P(x^(1/3))*sqrt(1/P(x^(1/3))-(1+8*x^(1/3))/2))/(6*x^(1/3)), with cb(x):=1/sqrt(1-4*x) (o.g.f. of A000984) and P(x):=P(-1/2,4*x)=1/sqrt(1+4*x+16*x^2) (o.g.f. of A116091, with P(x,z) the o.g.f. of the Legendre polynomials).
From Peter Bala, Mar 19 2023: (Start)
a(n) = (1/2)*Sum_{k = 0..3*n+1} binomial(3*n+1,k)^2.
a(n) = (1/2)*hypergeom([-1 - 3*n, -1 - 3*n], [1], 1).
a(n) = 8*(2*n - 1)*(6*n + 1)*(6*n - 1)/(n*(3*n + 1)*(3*n - 1)) * a(n-1). (End)
Right-hand side of the binomial sum identity (1/18) * Sum_{k = 0..6*n+3} (-1)^(n+k) * (k/(2*n + 1))^2 * binomial(6*n+3, k)^2 = a(n). - Peter Bala, Nov 05 2024

A081387 Number of non-unitary prime divisors of central binomial coefficient, C(2n,n) = A000984(n), i.e., number of prime factors in C(2n,n) whose exponent is greater than one.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 2, 2, 2, 1, 1, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 2, 3, 2, 3, 2, 3, 3, 2, 3, 3, 4, 3, 2, 2, 2, 2, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 2, 4, 2, 2, 3, 3, 3, 3, 4, 4, 5, 4, 4, 2, 3, 3, 2, 2, 2, 4, 3, 3, 4, 3, 4, 5, 4, 2, 2, 2, 3, 5, 5, 5, 5, 3, 2, 3, 2, 3, 3, 3
Offset: 1

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			For n = 14: binomial(28,14) = 40116600 = 2*2*2*3*3*3*5*5*17*19*23; unitary prime divisors: {17,19,23}; non-unitary prime divisors: {2,3,5}, so a(14) = 3.
		

Programs

Formula

a(n) = A056170(A000984(n)) = A001221(A000984(n)) - A081386(n) = A067434(n) - A081386(n).

A201555 a(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Original entry on oeis.org

1, 2, 70, 48620, 601080390, 126410606437752, 442512540276836779204, 25477612258980856902730428600, 23951146041928082866135587776380551750, 365907784099042279561985786395502921046971688680, 90548514656103281165404177077484163874504589675413336841320
Offset: 0

Author

Paul D. Hanna, Dec 02 2011

Keywords

Comments

Central coefficients of triangle A228832.

Examples

			L.g.f.: L(x) = 2*x + 70*x^2/2 + 48620*x^3/3 + 601080390*x^4/4 + ...
where exponentiation equals the g.f. of A201556:
exp(L(x)) = 1 + 2*x + 37*x^2 + 16278*x^3 + 150303194*x^4 + ... + A201556(n)*x^n + ...
		

Programs

  • Mathematica
    Table[Binomial[2n^2,n^2],{n,0,10}] (* Harvey P. Dale, Dec 10 2011 *)
  • PARI
    a(n) = binomial(2*n^2,n^2)
    
  • Python
    from math import comb
    def A201555(n): return comb((m:=n**2)<<1,m) # Chai Wah Wu, Jul 08 2022

Formula

L.g.f.: ignoring initial term, equals the logarithmic derivative of A201556.
a(n) = (2*n^2)! / (n^2)!^2.
a(n) = Sum_{k=0..n^2} binomial(n^2,k)^2.
For primes p >= 5: a(p) == 2 (mod p^3), Oblath, Corollary II; a(p) == binomial(2*p,p) (mod p^6) - see Mestrovic, Section 5, equation 31. - Peter Bala, Dec 28 2014
A007814(a(n)) = A159918(n). - Antti Karttunen, Apr 27 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984.

A226078 Table read by rows: prime power factors of central binomial coefficients, cf. A000984.

Original entry on oeis.org

1, 2, 2, 3, 4, 5, 2, 5, 7, 4, 9, 7, 4, 3, 7, 11, 8, 3, 11, 13, 2, 9, 5, 11, 13, 4, 5, 11, 13, 17, 4, 11, 13, 17, 19, 8, 3, 7, 13, 17, 19, 4, 7, 13, 17, 19, 23, 8, 25, 7, 17, 19, 23, 8, 27, 25, 17, 19, 23, 16, 9, 5, 17, 19, 23, 29, 2, 9, 5, 17, 19, 23, 29, 31
Offset: 0

Author

Reinhard Zumkeller, May 25 2013

Keywords

Examples

			.   n        initial rows               A000984(n)   A226047(n)
.  ---+------------------------------+-------------+------------
.   0   [1]                                      1
.   1   [2]                                      2            2
.   2   [2,3]                                    6            3
.   3   [4,5]                                   20            5
.   4   [2,5,7]                                 70            7
.   5   [4,9,7]                                252            9
.   6   [4,3,7,11]                             924           11
.   7   [8,3,11,13]                           3432           13
.   8   [2,9,5,11,13]                        12870           13
.   9   [4,5,11,13,17]                       48620           17
.  10   [4,11,13,17,19]                     184756           19
.  11   [8,3,7,13,17,19]                    705432           19
.  12   [4,7,13,17,19,23]                  2704156           23
.  13   [8,25,7,17,19,23]                 10400600           25
.  14   [8,27,25,17,19,23]                40116600           27
.  15   [16,9,5,17,19,23,29]             155117520           29
.  16   [2,9,5,17,19,23,29,31]           601080390           31
.  17   [4,27,5,11,19,23,29,31]         2333606220           31
.  18   [4,3,25,7,11,19,23,29,31]       9075135300           31
.  19   [8,3,25,7,11,23,29,31,37]      35345263800           37
.  20   [4,9,5,7,11,13,23,29,31,37]   137846528820           37 .
		

Crossrefs

Cf. A067434 (row lengths), A001316 (left edge), A060308 (right edge), A226047 (row maxima), A226083 (row minima), A000984 (row products).
Cf. A267823.

Programs

  • Haskell
    a226078 n k = a226078_tabf !! n !! k
    a226078_row n = a226078_tabf !! n
    a226078_tabf = map a141809_row a000984_list
    
  • Maple
    f:= n-> add(i[2]*x^i[1], i=ifactors(n)[2]):
    b:= proc(n) local p;
          p:= add(f(n+i) -f(i), i=1..n);
          seq(`if`(coeff(p, x, i)>0,
                 i^coeff(p, x, i), NULL), i=1..degree(p))
        end:
    T:= n-> `if`(n=0, 1, b(n)):
    seq(T(n), n=0..30);  # Alois P. Heinz, May 25 2013
  • Mathematica
    Table[Power @@@ FactorInteger[(2n)!/n!^2] , {n, 0, 30}] // Flatten (* Jean-François Alcover, Jul 29 2015 *)
  • PARI
    row(n)= if(n<1, [1], [ e[1]^e[2] |e<-Col(factor(binomial(2*n, n)))]); \\ Ruud H.G. van Tol, Nov 18 2024

Formula

T(n,k) = A141809(A000984(n),k) for k = 0..A067434(n)-1.

A081386 Number of unitary prime divisors of central binomial coefficient, C(2n,n) = A000984(n), i.e., number of those prime factors in C(2n,n), whose exponent equals one.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 3, 4, 4, 4, 5, 5, 4, 3, 5, 7, 6, 7, 7, 8, 9, 9, 6, 7, 7, 7, 8, 11, 12, 11, 11, 11, 12, 12, 12, 13, 13, 13, 11, 13, 12, 14, 13, 13, 15, 14, 14, 14, 15, 16, 16, 16, 17, 19, 18, 17, 18, 19, 18, 19, 18, 18, 18, 20, 18, 21, 22, 20, 20, 20, 20, 20, 20, 19, 21, 21, 24, 23
Offset: 1

Author

Labos Elemer, Mar 27 2003

Keywords

Examples

			n=10: C(20,10) = 184756 = 2*2*11*13*17*19; unitary-p-divisors = {11,13,17,19}, so a(10)=4.
		

Programs

  • Mathematica
    Table[Function[m, Count[Divisors@ m, k_ /; And[PrimeQ@ k, GCD[k, m/k] == 1]]]@ Binomial[2 n, n], {n, 50}] (* Michael De Vlieger, Dec 17 2016 *)
  • PARI
    a(n) = my(f=factor(binomial(2*n, n))); sum(k=1, #f~, f[k,2] == 1); \\ Michel Marcus, Dec 18 2016

Formula

a(n) = A056169(A000984(n)).

A134760 a(n) = 2*A000984(n) - 1.

Original entry on oeis.org

1, 3, 11, 39, 139, 503, 1847, 6863, 25739, 97239, 369511, 1410863, 5408311, 20801199, 80233199, 310235039, 1202160779, 4667212439, 18150270599, 70690527599, 275693057639, 1076515748879, 4208197927439, 16466861455199, 64495207366199, 252821212875503
Offset: 0

Author

Gary W. Adamson, Nov 09 2007

Keywords

Comments

Inverse binomial transform of this is A134761: (the sequence interpolated with ones): (1, 1, 3, 1, 11, 1, 39, 1, 139, ...).

Crossrefs

Programs

  • Magma
    [2*(n+1)*Catalan(n)-1: n in [0..40]]; // G. C. Greubel, Apr 06 2024
    
  • Maple
    a:= proc(n) option remember; `if`(n<2, 2*n+1,
           ((12-31*n+15*n^2) *a(n-1)
            -2*(3*n-2)*(2*n-3)*a(n-2)) / (n*(3*n-5)))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 16 2013
  • Mathematica
    a[n_] := 2 Binomial[2n, n] - 1; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 21 2017 *)
  • SageMath
    [2*binomial(2*n,n)-1 for n in range(41)] # G. C. Greubel, Apr 06 2024

Formula

From R. J. Mathar, Mar 23 2015: (Start)
n*a(n) = 2*(3*n-2)*a(n-1) - (9*n-14)*a(n-2) + 2*(2*n-5)*a(n-3).
n*(3*n-5)*a(n) = (15*n^2-31*n+12)*a(n-1) - 2*(3*n-2)*(2*n-3)*a(n-2). (End)
From G. C. Greubel, Apr 06 2024: (Start)
a(n) = 2*(n+1)*A000108(n) - 1.
G.f.: 2/sqrt(1 - 4*x) - 1/(1 - x).
E.g.f.: 2*exp(2*x)*BesselI(0, 2*x) - exp(x). (End)

A187365 Trisection of A000984 (central binomial coefficients): binomial(2(3n+2),3n+2)/3!, n>=0.

Original entry on oeis.org

1, 42, 2145, 117572, 6686100, 388934370, 22974421470, 1372238454600, 82653088824684, 5011211083256840, 305437356823765089, 18697712969443807572, 1148770108115543559100, 70797430141465286938140, 4374750896947475198160300, 270950190057528375091435920
Offset: 0

Author

Wolfdieter Lang, Mar 10 2011

Keywords

Comments

See a comment under A187357 concerning trisection.
This appears also in the trisection of A001700: binomial(2*(3*n+1)+1,(3*n+1)+1)/3.

Crossrefs

Cf. A066802 binomial(6n,3n), A187364 binomial(2*(3n+1),3n+1)/2, A002458, A100033.

Formula

a(n)=binomial(2*(3*n+2),3*n+2)/3!, n>=0.
a(n)=binomial(3*(2*n+1),3*n+2)/3, n>=0.
O.g.f.:(cb(x^(1/3)) - sqrt(2)*P(x^(1/3))*sqrt(1/P(x^(1/3))-(1-4*x^(1/3))/2))/(18*x^(2/3)),
with cb(x):=1/sqrt(1-4*x) (o.g.f. of A000984) and P(x):=P(-1/2,4*x)=1/sqrt(1+4*x+16*x^2) (o.g.f. of A116091, with P(x,z)the o.g.f. of the Legendre polynomials).
From Peter Bala, Mar 19 2023: (Start)
a(n) = (1/6)*Sum_{k = 0..3*n+2} binomial(3*n+2,k)^2.
a(n) = (1/6)*hypergeom([-2 - 3*n, -2 - 3*n], [1], 1).
a(n) = 8*(2*n + 1)*(6*n + 1)*(6*n - 1)/(n*(3*n + 1)*(3*n + 2)) * a(n-1). (End)
Showing 1-10 of 1127 results. Next