cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A285388 a(n) = numerator of ((1/n) * Sum_{k=0..n^2-1} binomial(2k,k)/4^k).

Original entry on oeis.org

1, 35, 36465, 300540195, 79006629023595, 331884405207627584403, 22292910726608249789889125025, 11975573020964041433067793888190275875, 411646257111422564507234009694940786177843149765, 56592821660064550728377610673427602421565368547133335525825
Offset: 1

Views

Author

Ralf Steiner, Apr 18 2017

Keywords

Comments

Editorial comment: This sequence arose from Ralf Steiner's attempt to prove Legendre's conjecture that there is a prime between N^2 and (N+1)^2 for all N. - N. J. A. Sloane, May 01 2017

Crossrefs

Cf. A000079, A000265, A056220, A060757, A201555, A285389 (denominators), A285406, A280655 (similar), A190732 (2/sqrt(Pi)), A285738 (greatest prime factor), A285717, A285730, A285786, A286264, A000290 (n^2), A056220 (2*n^2 -1), A286127 (sum a(n-1)/a(n)).

Programs

  • Magma
    [Numerator( n*(n^2+1)*Catalan(n^2)/2^(2*n^2-1) ): n in [1..21]]; // G. C. Greubel, Dec 11 2021
    
  • Mathematica
    Table[Numerator[Sum[Binomial[2k,k]/4^k,{k,0,n^2-1}]/n],{n,1,10}]
    Numerator[Table[2^(1-2 n^2) n Binomial[2 n^2,n^2],{n,1,10}]] (* Ralf Steiner, Apr 22 2017 *)
  • PARI
    A285388(n) = numerator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)); \\ Antti Karttunen, Apr 27 2017
    
  • PARI
    a(n) = m=n*binomial(2*n^2, n^2);m>>valuation(m,2) \\ David A. Corneth, Apr 27 2017
    
  • Python
    from sympy import binomial, Integer
    def a(n): return (Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).numerator # Indranil Ghosh, Apr 27 2017
    
  • Sage
    [numerator( n*(n^2+1)*catalan_number(n^2)/2^(2*n^2-1) ) for n in (1..20)] # G. C. Greubel, Dec 11 2021

Formula

a(n) is numerator of n*binomial(2 n^2, n^2)/2^(2*n^2 - 1). - Ralf Steiner, Apr 26 2017
a(n) = numerator(n*A201555(n) / (A060757(n)/2)) = n*A201555(n) / 2^(A285717(n)) = A000265(n*A201555(n)). [Using Ralf Steiner's formula and A285717(n) <= A056220(n), cf. A285406.] - Antti Karttunen, Apr 27 2017
Limit_{i->oo} a(i)*A285389(i+1)/(a(i+1)*A285389(i)) = 1. - Ralf Steiner, May 03 2017

Extensions

Edited (including the removal of the author's claim that this leads to a proof of the Legendre conjecture) by N. J. A. Sloane, May 01 2017
Formula section edited by M. F. Hasler, May 02 2017
Edited by N. J. A. Sloane, May 10 2017

A228832 Triangle defined by T(n,k) = binomial(n*k, k^2), for n>=0, k=0..n, as read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 15, 1, 1, 4, 70, 220, 1, 1, 5, 210, 5005, 4845, 1, 1, 6, 495, 48620, 735471, 142506, 1, 1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1, 1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1, 1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1
Offset: 0

Views

Author

Paul D. Hanna, Sep 04 2013

Keywords

Comments

Central coefficients are A201555(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Examples

			The triangle of coefficients C(n*k, k^2), n>=k, k=0..n, begins:
1;
1, 1;
1, 2, 1;
1, 3, 15, 1;
1, 4, 70, 220, 1;
1, 5, 210, 5005, 4845, 1;
1, 6, 495, 48620, 735471, 142506, 1;
1, 7, 1001, 293930, 30421755, 183579396, 5245786, 1;
1, 8, 1820, 1307504, 601080390, 40225345056, 69668534468, 231917400, 1;
1, 9, 3060, 4686825, 7307872110, 3169870830126, 96926348578605, 37387265592825, 11969016345, 1; ...
		

Crossrefs

Cf. A228808 (row sums), A228833 (antidiagonal sums), A135860 (diagonal), A201555 (central terms).
Cf. A229052.
Cf. related triangles: A228904 (exp), A209330, A226234, A228836.

Programs

  • PARI
    {T(n, k)=binomial(n*k, k^2)}
    for(n=0, 10, for(k=0, n, print1(T(n, k), ", ")); print(""))

A201556 G.f.: exp( Sum_{n>=1} C(2*n^2,n^2) * x^n/n ).

Original entry on oeis.org

1, 2, 37, 16278, 150303194, 25282422428664, 73752140616074524401, 3639659041645240391812731402, 2993893262520330875797362908273443346, 40656420461436928818704580402413441308206341488, 9054851465691640957562090101797213977192016103053025996396
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2011

Keywords

Comments

Self-convolution of A213402.
Compare to the g.f. C(x) = 1 + x*C(x)^2 of the Catalan numbers (A000108): C(x)^2 = exp( Sum_{n>=1} binomial(2*n,n) * x^n/n ).

Examples

			G.f.: A(x) = 1 + 2*x + 37*x^2 + 16278*x^3 + 150303194*x^4 +...
where
log(A(x)) = 2*x + 70*x^2/2 + 48620*x^3/3 + 601080390*x^4/4 +...+ C(2*n^2,n^2)*x^n/n +...
		

Crossrefs

Programs

  • Mathematica
    nmax = 10; b = ConstantArray[0, nmax+1]; b[[1]] = 1; Do[b[[n+1]] = 1/n*Sum[Binomial[2*k^2, k^2]*b[[n-k+1]], {k, 1, n}], {n, 1, nmax}]; b  (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,binomial(2*m^2,m^2)*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,binomial(2*k^2,k^2)*a(n-k)))}

Formula

a(n) = (1/n) * Sum_{k=1..n} C(2*k^2,k^2) * a(n-k) for n>0 with a(0)=1.
a(n) ~ 4^(n^2) / (sqrt(Pi)*n^2). - Vaclav Kotesovec, Mar 06 2014

A285406 Base-2 logarithm of denominator of Sum_{k=0..n^2-1} (-1)^k*sqrt(Pi)/(Gamma(1/2-k)*Gamma(1+k)*n).

Original entry on oeis.org

0, 5, 15, 28, 46, 68, 94, 123, 158, 195, 236, 283, 333, 387, 445, 506, 574, 643, 716, 794, 875, 961, 1054, 1146, 1244, 1346, 1451, 1562, 1676, 1794, 1916, 2041, 2174, 2307, 2444, 2586, 2731, 2881, 3034, 3193, 3356, 3520, 3690, 3864, 4041, 4227, 4413, 4601, 4796, 4993
Offset: 1

Views

Author

Ralf Steiner, Apr 18 2017

Keywords

Comments

Needed for studying of Wallis-kind products of central binomials.

Crossrefs

Programs

  • Mathematica
    Log[2,Table[Denominator[Sum[Binomial[2k,k]/4^k,{k,0,n^2-1}]/n], {n,1,50}]]
    Log[2,Denominator[Table[2^(1-2 n^2) n Binomial[2 n^2,n^2],{n,1,50}]]] (* Ralf Steiner, Apr 22 2017 *)
  • PARI
    a(n) = logint(denominator((2^(1 - 2*(n^2)))*n*binomial(2*(n^2), n^2)), 2); \\ Indranil Ghosh, Apr 27 2017
    
  • PARI
    val(n, p) = my(r=0); while(n, r+=n\=p);r
    a(n) = 2*n^2-1 - valuation(n, 2) - val(2*n^2, 2) + 2*val(n^2, 2) \\ David A. Corneth, Apr 28 2017
    
  • Python
    from sympy import binomial, integer_log, Integer
    def a(n): return integer_log((Integer(2)**(1 - 2*n**2)*n*binomial(2*n**2, n**2)).denominator, 2)[0] # Indranil Ghosh, Apr 27 2017
    
  • Scheme
    (define (A285406 n) (- (* 2 n n) (A007814 n) (A000120 (* n n)) 1)) ;; Antti Karttunen, Apr 28 2017

Formula

a(n) = A000523(A285389(n)).
a(n) = A056220(n) - A285717(n) = (2*(n^2)) - A007814(n) - A000120(n^2) - 1. - Antti Karttunen, Apr 28 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984

A285717 a(n) = A007814(n) + A159918(n) = A007814(n) + A000120(n^2).

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 3, 4, 3, 4, 5, 4, 4, 4, 4, 5, 3, 4, 5, 5, 6, 6, 3, 5, 5, 5, 6, 5, 5, 5, 5, 6, 3, 4, 5, 5, 6, 6, 7, 6, 5, 7, 7, 7, 8, 4, 4, 6, 5, 6, 5, 6, 8, 7, 7, 6, 6, 6, 7, 6, 6, 6, 6, 7, 3, 4, 5, 5, 6, 6, 7, 6, 6, 7, 9, 7, 7, 8, 5, 7, 6, 6, 8, 8, 7, 8, 7, 8, 9, 9, 5, 5, 6, 5, 5, 7, 5, 6, 6, 7, 9, 6, 7, 7, 6, 9, 8, 8, 8, 8, 4, 7, 7, 7, 8, 7, 9, 8, 8, 7
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2017

Keywords

Crossrefs

Programs

  • Mathematica
    Table[IntegerExponent[n, 2] + DigitCount[n^2, 2, 1], {n, 120}] (* Indranil Ghosh, Apr 27 2017 *)
  • PARI
    a(n) = valuation(n, 2) + hammingweight(n^2); \\ Indranil Ghosh, Apr 27 2017
    
  • Python
    import math
    def a(n): return int(math.log(n - (n & n - 1), 2)) + bin(n**2)[2:].count("1") # Indranil Ghosh, Apr 27 2017
  • Scheme
    (define (A285717 n) (+ (A007814 n) (A159918 n)))
    (define (A285717 n) (A007814 (* n (A201555 n))))
    

Formula

a(n) = A007814(n) + A159918(n) = A007814(n) + A000120(n^2).
a(n) = A007814(n*A201555(n)).

A245245 a(n) = C(3*n^2, n^2).

Original entry on oeis.org

1, 3, 495, 4686825, 2254848913647, 52588547141148893628, 58152371703925106867047535565, 3012179439602547459232394950891834843500, 7255167425905233148164780983569428433097979870294255, 808718755397067598640202627155266231883064669446721506930287016061
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2014

Keywords

Comments

a(n) = A005809(n^2).

Crossrefs

Programs

  • Mathematica
    Table[Binomial[3*n^2, n^2],{n,0,20}] (* Vaclav Kotesovec, Jul 15 2014 *)
  • PARI
    {a(n)=binomial(3*n^2, n^2)}
    for(n=0,15,print1(a(n),", "))

Formula

Logarithmic derivative of A213409 (ignoring initial term a(0) of this sequence).
a(n) ~ 3^(3*n^2+1/2) / (sqrt(Pi) * n * 2^(2*n^2+1)). - Vaclav Kotesovec, Jul 15 2014

A214441 Catalan numbers at square positions: a(n) = A000108(n^2).

Original entry on oeis.org

1, 1, 14, 4862, 35357670, 4861946401452, 11959798385860453492, 509552245179617138054608572, 368479169875816659479009042713546950, 4462290049988320482463241297506133183499654740, 896519947090131496687170070074100632420837521538745909320
Offset: 0

Views

Author

Paul D. Hanna, Jul 17 2012

Keywords

Crossrefs

Programs

  • Mathematica
    CatalanNumber[Range[0,10]^2] (* Harvey P. Dale, May 27 2013 *)
  • PARI
    {a(n)=binomial(2*n^2,n^2)/(n^2+1)}
    for(n=0,15,print1(a(n),", "))

Formula

a(n) = binomial(2*n^2, n^2) / (n^2 + 1).

A283048 a(n) = (6*n^2)!/((n^2)!^6).

Original entry on oeis.org

1, 720, 3246670537110000, 101097362223624462291180422369532000000, 11820969246826954556547676599863670334721199951925900837836206749590000
Offset: 0

Views

Author

Arkadiusz Wesolowski, Feb 27 2017

Keywords

Comments

For n >= 1, a(n) is the number of possible combinations of an n X n X n Rubik's cube with randomly placed stickers.

Crossrefs

Cf. A201555.

Programs

  • Magma
    [Factorial(6*n^2)/Factorial(n^2)^6: n in [0..4]];
    
  • Mathematica
    Table[(6*n^2)!/(n^2)!^6, {n, 0, 4}]
  • PARI
    a(n)=(6*n^2)!/(n^2)!^6;

Formula

a(n) = (6*n^2)!/((n^2)!^6).
Showing 1-8 of 8 results.