cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A201555 a(n) = C(2*n^2,n^2) = A000984(n^2), where A000984 is the central binomial coefficients.

Original entry on oeis.org

1, 2, 70, 48620, 601080390, 126410606437752, 442512540276836779204, 25477612258980856902730428600, 23951146041928082866135587776380551750, 365907784099042279561985786395502921046971688680, 90548514656103281165404177077484163874504589675413336841320
Offset: 0

Views

Author

Paul D. Hanna, Dec 02 2011

Keywords

Comments

Central coefficients of triangle A228832.

Examples

			L.g.f.: L(x) = 2*x + 70*x^2/2 + 48620*x^3/3 + 601080390*x^4/4 + ...
where exponentiation equals the g.f. of A201556:
exp(L(x)) = 1 + 2*x + 37*x^2 + 16278*x^3 + 150303194*x^4 + ... + A201556(n)*x^n + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[2n^2,n^2],{n,0,10}] (* Harvey P. Dale, Dec 10 2011 *)
  • PARI
    a(n) = binomial(2*n^2,n^2)
    
  • Python
    from math import comb
    def A201555(n): return comb((m:=n**2)<<1,m) # Chai Wah Wu, Jul 08 2022

Formula

L.g.f.: ignoring initial term, equals the logarithmic derivative of A201556.
a(n) = (2*n^2)! / (n^2)!^2.
a(n) = Sum_{k=0..n^2} binomial(n^2,k)^2.
For primes p >= 5: a(p) == 2 (mod p^3), Oblath, Corollary II; a(p) == binomial(2*p,p) (mod p^6) - see Mestrovic, Section 5, equation 31. - Peter Bala, Dec 28 2014
A007814(a(n)) = A159918(n). - Antti Karttunen, Apr 27 2017, based on Vladimir Shevelev's Jul 20 2009 formula in A000984.

A254746 a(n) = Catalan(n^2) mod prime(n).

Original entry on oeis.org

1, 2, 2, 5, 8, 0, 0, 11, 0, 24, 0, 0, 29, 0, 0, 0, 0, 39, 58, 0, 21, 33, 9, 69, 9, 0, 16, 86, 0, 0, 0, 0, 0, 64, 139, 0, 0, 0, 75, 12, 4, 0, 0, 119, 195, 0, 193, 202, 0, 0, 55, 218, 0, 0, 0, 0, 84, 201, 0, 0, 203, 275, 0, 198, 159, 0, 0, 0, 0, 255, 13, 204, 0
Offset: 1

Views

Author

Vincenzo Librandi, Feb 07 2015

Keywords

Crossrefs

Programs

  • Magma
    [Catalan(n^2) mod NthPrime(n): n in [1..100]];
    
  • Mathematica
    Table[Mod[CatalanNumber[n^2], Prime[n]], {n, 80}]
  • Python
    from sympy import factorint, prime
    A254746_list, c, s, s2 = [1], {}, 2, 4
    for n in range(2,10**3+1):
        for p,e in factorint(4*n-2).items():
            if p in c:
                c[p] += e
            else:
                c[p] = e
        for p,e in factorint(n+1).items():
            if c[p] == e:
                del c[p]
            else:
                c[p] -= e
        if n == s2:
            d, ps = 1, prime(s)
            for p,e in c.items():
                d = (d*pow(p,e,ps)) % ps
            A254746_list.append(d)
            s2 += 2*s+1
            s += 1 # Chai Wah Wu, Feb 14 2015

Formula

a(n) = A000108(n^2) mod A000040(n).
Showing 1-2 of 2 results.