cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A022553 Number of binary Lyndon words containing n letters of each type; periodic binary sequences of period 2n with n zeros and n ones in each period.

Original entry on oeis.org

1, 1, 1, 3, 8, 25, 75, 245, 800, 2700, 9225, 32065, 112632, 400023, 1432613, 5170575, 18783360, 68635477, 252085716, 930138521, 3446158600, 12815663595, 47820414961, 178987624513, 671825020128, 2528212128750, 9536894664375, 36054433807398, 136583760011496
Offset: 0

Views

Author

Keywords

Comments

Also number of asymmetric rooted plane trees with n+1 nodes. - Christian G. Bower
Conjecturally, number of irreducible alternating Euler sums of depth n and weight 3n.
a(n+1) is inverse Euler transform of A000108. Inverse Witt transform of A006177.
Dimension of the degree n part of the primitive Lie algebra of the Hopf algebra CQSym (Catalan Quasi-Symmetric functions). - Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Oct 22 2006
For n>0, 2*a(n) is divisible by n (cf. A268619), 12*a(n) is divisible by n^2 (cf. A268592). - Max Alekseyev, Feb 09 2016

Examples

			a(3)=3 counts 6-periodic 000111, 001011 and 001101. a(4)=8 counts 00001111, 00010111, 00011011, 00011101, 00100111, 00101011, 00101101, and 00110101. - _R. J. Mathar_, Oct 20 2021
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, p. 336 (4.4.64)

Crossrefs

Cf. A003239, A005354, A000740, A007727, A086655, A289978 (multiset trans.), A001037 (binary Lyndon wds.), A074655 (3 letters), A074656 (4 letters).
A diagonal of the square array described in A051168.

Programs

  • Maple
    with(numtheory):
    a:= n-> `if`(n=0, 1,
            add(mobius(n/d)*binomial(2*d, d), d=divisors(n))/(2*n)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 21 2011
  • Mathematica
    a[n_] := Sum[MoebiusMu[n/d]*Binomial[2d, d], {d, Divisors[n]}]/(2n); a[0] = 1; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 02 2015 *)
  • PARI
    a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*binomial(2*d,d))/2/n)
    
  • Python
    from sympy import mobius, binomial, divisors
    def a(n):
        return 1 if n == 0 else sum(mobius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 05 2017
    
  • Sage
    def a(n):
        return 1 if n ==0 else sum(moebius(n//d)*binomial(2*d, d) for d in divisors(n))//(2*n)
    # F. Chapoton, Apr 23 2020

Formula

a(n) = A060165(n)/2 = A007727(n)/(2*n) = A045630(n)/n.
Product_n (1-x^n)^a(n) = 2/(1+sqrt(1-4*x)); a(n) = 1/(2*n) * Sum_{d|n} mu(n/d)*C(2*d,d). Also Moebius transform of A003239. - Christian G. Bower
a(n) ~ 2^(2*n-1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 11 2014
G.f.: 1 + Sum_{k>=1} mu(k)*log((1 - sqrt(1 - 4*x^k))/(2*x^k))/k. - Ilya Gutkovskiy, May 18 2019

A007727 Number of 2n-bead black-white strings with n black beads and fundamental period 2n.

Original entry on oeis.org

1, 2, 4, 18, 64, 250, 900, 3430, 12800, 48600, 184500, 705430, 2703168, 10400598, 40113164, 155117250, 601067520, 2333606218, 9075085776, 35345263798, 137846344000, 538257870990, 2104098258284, 8233430727598, 32247600966144
Offset: 0

Views

Author

Doug Bowman, bowman(AT)math.uiuc.edu

Keywords

Comments

For n>0, a(n) is divisible by n^2 (cf. A268619) and 6*a(n) is divisible by n^3 (cf. A268592). - Max Alekseyev, Feb 07 2016

Crossrefs

Programs

  • Maple
    A007727 := proc(n)
        if n = 0 then
            1;
        else
            add(numtheory[mobius](n/d)*binomial(2*d,d), d =numtheory[divisors](n)) ;
        end if ;
    end proc:
    seq(A007727(n),n=0..10) ; # R. J. Mathar, Nov 10 2021
  • Mathematica
    a[n_] := If[n == 0, 1, Sum[MoebiusMu[n/d] Binomial[2d, d], {d, Divisors[n]}]];
    Table[a[n], {n, 0, 24}] (* Jean-François Alcover, May 05 2023 *)
  • PARI
    { a(n) = if(n>0,sumdiv(n, d, moebius(n/d)*binomial(2*d, d)),0); }

Formula

For n>0, a(n) = Sum_{d|n} A008683(n/d)*A000984(d).
For n>0, a(n) = 2 * A045630(n).
a(0)=1, a(n) = n * A060165(n) = 2n * A022553(n). - Ralf Stephan, Sep 01 2003

Extensions

Edited by Max Alekseyev, Feb 09 2016

A115141 Convolution of A115140 with itself.

Original entry on oeis.org

1, -2, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0

Views

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

This is the so-called A-sequence for the Riordan triangles A053122, A110162, A129818, A158454 and signed A158909. For the notion of Z- and A-sequences for Riordan arrays see the W. Lang link under A006232 with details and references. Wolfdieter Lang, Dec 20 2010. [Revised, Nov 13 2012, Nov 22 2012 and Oct 22 2019]
a(n)*(-1)^n is the A-sequence for the Riordan triangle A111125. - Wolfdieter Lang, Jun 26 2011

Examples

			G.f. = 1 - 2*x - x^2 - 2*x^3 - 5*x^4 - 14*x^5 - 42*x^6 - 132*x^7 - 429*x^8 + ...
		

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-2*x+Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
    
  • Mathematica
    a[n_] := -First[ ListConvolve[ cc = Array[ CatalanNumber, n-1, 0], cc]]; a[0] = 1; a[1] = -2; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Oct 21 2011 *)
    CoefficientList[Series[(1-2*x+Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    {a(n) = if( n<1, n==0, -(n==1) -binomial( 2*n-2, n-1) / n)} /* Michael Somos, Mar 28 2012 */
    
  • Sage
    ((1-2*x+sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^2 = (1-x) - x*c(x) with the o.g.f. c(x) = (1-sqrt(1-4*x) )/(2*x) of A000108 (Catalan numbers).
a(0)=1, a(1)=-2, a(n) = -C(n-1), n>=2, with C(n):=A000108(n) (Catalan). The start [1, -2] is row n=2 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
The convolution inverse is A000108(x)^2. - Michael Somos, Mar 28 2012
REVERT transform is A069271. - Michael Somos, Mar 28 2012
EULER transform of -A060165. - Michael Somos, Mar 28 2012
D-finite with recurrence: n*a(n) +2*(-2*n+3)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

A060170 Number of orbits of length n under the map whose periodic points are counted by A005809.

Original entry on oeis.org

3, 6, 27, 120, 600, 3078, 16611, 91872, 520749, 3004200, 17594247, 104304888, 624801957, 3775722342, 22991161500, 140928011136, 868886416866, 5384796881850, 33525472069563, 209592223788000, 1315211209630794, 8281053081282894, 52301607644921259, 331260902534858976, 2103541885645955625, 13389670112374830378
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A005809 records the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.
a(n) is divisible by n (cf. A268617), 2*a(n) is divisible by n^2 (cf. A268618).

Examples

			a(3) = 27 since a map whose periodic points are counted by A005809 has 3 fixed points and 84 points of period 3, hence 27 orbits of length 3.
		

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, moebius(n/d)*binomial(3*d, d))/n; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = (1/n)* Sum_{d|n} A008683(n/d)*A005809(d).

Extensions

Edited by Max Alekseyev, Feb 09 2016

A060171 Number of orbits of length n under a map whose periodic points seem to be counted by A006953.

Original entry on oeis.org

12, 54, 80, 30, 24, 5400, 0, 990, 1568, 636, 24, 2720, 0, 240, 5704, 510, 0, 3835776, 0, 26724, 3600, 108, 24, 89760, 0, 240, 1064, 120, 24, 113569300, 0, 510, 11752, 0, 264, 278281640
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A006953 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(3) = 80 since a map whose periodic points are counted by A006953 has 12 fixed points and 252 points of period 3, hence 80 orbits of length 3.
		

Crossrefs

Programs

  • PARI
    a(n) = sumdiv(n, d, moebius(d)*denominator(bernfrac(2*n/d)/(2*n/d)))/n; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A006953(n/d).

A060164 Number of orbits of length n under the map whose periodic points are counted by A000364.

Original entry on oeis.org

1, 2, 20, 345, 10104, 450450, 28480140, 2423938845, 267208852820, 37037118818700, 6304443126648900, 1292877846962865230, 314390193022547991720, 89447117243116404721950, 29436259549934873636908816, 11094961973721205588579579845, 4748429366816935180127543967840
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A000364 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(3) = 20 since the conjectured map whose periodic points are counted by A000364 would have 1 fixed point and 61 points of period 3, so it must have 20 orbits of length 3.
		

Crossrefs

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A000364(n/d).

A006173 Witt vector *2!.

Original entry on oeis.org

2, 1, 4, 13, 44, 135, 472, 1492, 5324, 17405, 63944, 215096, 799416, 2752909, 10310384, 36443256, 137263244, 489166324, 1860249448, 6739795717, 25596173800, 93596253769, 357974884304, 1319325363658, 5056389932088
Offset: 1

Views

Author

Keywords

Comments

If c is the Witt transform of b then b(n) = Sum_{d|n} A074650(n/d, c(d)).
The Somos transform sends sequence {a(n)} to sequence with g.f. Product_{i=1..n} 1/(1-a(i)*x^i).

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

Inverse Somos transform of A000108 shifted left. - Wouter Meeussen, Aug 20 2002
Witt transform of A060165. - Sean A. Irvine, Jan 15 2017

Extensions

Edited by Christian G. Bower, Aug 20 2002

A060166 Number of orbits of length n under the map whose periodic points are counted by A001641.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 10, 17, 26, 44, 68, 115, 184, 306, 500, 835, 1374, 2301, 3822, 6409, 10718, 18028, 30280, 51077, 86130, 145641, 246370, 417600, 708246, 1203069, 2045010, 3480408, 5927660, 10105819, 17241140, 29439580, 50302162, 86012630, 147166248, 251963055, 431633348
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A001641 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			a(7) = 7 since a map whose periodic points are counted by A001641 would have 1 fixed point and 50 points of period 7, hence 7 orbits of length 7.
		

Crossrefs

Programs

  • PARI
    a001641(n)=if(n<0, 0, polcoeff(x*(1+2*x+4*x^3)/(1-x-x^2-x^4)+x*O(x^n), n))
    a(n) = sumdiv(n, d, moebius(d)*a001641(n/d))/n; \\ Michel Marcus, Sep 10 2017

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001641(n/d).

Extensions

More terms from Michel Marcus, Sep 10 2017

A060167 Number of orbits of length n under the map whose periodic points are counted by A001642.

Original entry on oeis.org

1, 1, 1, 2, 4, 5, 9, 13, 23, 36, 63, 101, 175, 290, 497, 840, 1445, 2460, 4247, 7293, 12619, 21805, 37856, 65695, 114401, 199280, 347944, 607959, 1064130, 1864083, 3269948, 5740840, 10090148, 17748870, 31250297, 55063603, 97102485, 171355485, 302605780, 534729160, 945513850
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A001642 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(7) = 9 since a map whose periodic points are counted by A001642 would have 1 fixed point and 64 points of period 7, hence 9 orbits of length 7.
		

Crossrefs

Programs

  • PARI
    a001642(n) = if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4)/(1-x-x^2-x^4-x^5)+x*O(x^n), n));
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001642(n/d)); \\ Michel Marcus, Sep 11 2017

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001642(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017

A060168 Number of orbits of length n under the map whose periodic points are counted by A001643.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 10, 15, 26, 42, 74, 121, 212, 357, 620, 1064, 1856, 3209, 5618, 9794, 17192, 30153, 53114, 93554, 165308, 292250, 517802, 918207, 1630932, 2899434, 5161442, 9196168, 16402764, 29281168, 52319364, 93555601, 167427844, 299841117, 537357892, 963641588, 1729192432
Offset: 1

Views

Author

Thomas Ward, Mar 13 2001

Keywords

Comments

The sequence A001643 seems to record the number of points of period n under a map. The number of orbits of length n for this map gives the sequence above.

Examples

			u(7) = 10 since a map whose periodic points are counted by A001643 would have 1 fixed point and 71 points of period 7, hence 10 orbits of length 7.
		

Crossrefs

Programs

  • PARI
    a001643(n) = if(n<0, 0, polcoeff(x*(1+2*x+4*x^3+5*x^4+6*x^5)/(1-x-x^2-x^4-x^5-x^6)+x*O(x^n), n))
    a(n) = (1/n)*sumdiv(n, d, moebius(d)*a001643(n/d)); \\ Michel Marcus, Sep 11 2017

Formula

a(n) = (1/n)* Sum_{ d divides n } mu(d)*A001643(n/d).

Extensions

More terms from Michel Marcus, Sep 11 2017
Showing 1-10 of 17 results. Next