cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A111125 Triangle read by rows: T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.

Original entry on oeis.org

1, 3, 1, 5, 5, 1, 7, 14, 7, 1, 9, 30, 27, 9, 1, 11, 55, 77, 44, 11, 1, 13, 91, 182, 156, 65, 13, 1, 15, 140, 378, 450, 275, 90, 15, 1, 17, 204, 714, 1122, 935, 442, 119, 17, 1, 19, 285, 1254, 2508, 2717, 1729, 665, 152, 19, 1, 21, 385, 2079, 5148, 7007, 5733, 2940, 952, 189, 21, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 16 2005

Keywords

Comments

Riordan array ((1+x)/(1-x)^2, x/(1-x)^2). Row sums are A002878. Diagonal sums are A003945. Inverse is A113187. An interesting factorization is (1/(1-x), x/(1-x))(1+2*x, x*(1+x)). - Paul Barry, Oct 17 2005
Central coefficients of rows with odd numbers of term are A052227.
From Wolfdieter Lang, Jun 26 2011: (Start)
T(k,s) appears as T_s(k) in the Knuth reference, p. 285.
This triangle is related to triangle A156308(n,m), appearing in this reference as U_m(n) on p. 285, by T(k,s) - T(k-1,s) = A156308(k,s), k>=s>=1 (identity on p. 286). T(k,s) = A156308(k+1,s+1) - A156308(k,s+1), k>=s>=0 (identity on p. 286).
(End)
A111125 is jointly generated with A208513 as an array of coefficients of polynomials v(n,x): initially, u(1,x)= v(1,x)= 1; for n>1, u(n,x)= u(n-1,x) +x*(x+1)*v(n-1) and v(n,x)= u(n-1,x) +x*v(n-1,x) +1. See the Mathematica section. The columns of A111125 are identical to those of A208508. Here, however, the alternating row sums are periodic (with period 1,2,1,-1,-2,-1). - Clark Kimberling, Feb 28 2012
This triangle T(k,s) (with signs and columns scaled with powers of 5) appears in the expansion of Fibonacci numbers F=A000045 with multiples of odd numbers as indices in terms of odd powers of F-numbers. See the Jennings reference, p. 108, Theorem 1. Quoted as Lemma 3 in the Ozeki reference given in A111418. The formula is: F_{(2*k+1)*n} = Sum_{s=0..k} ( T(k,s)*(-1)^((k+s)*n)*5^s*F_{n}^(2*s+1) ), k >= 0, n >= 0. - Wolfdieter Lang, Aug 24 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
This triangle T(k,s) appears in the formula x^(2*k+1) - x^(-(2*k+1)) = Sum_{s=0..k} ( T(k,s)*(x-x^(-1))^(2*s+1) ), k>=0. Prove the inverse formula (due to the Riordan property this will suffice) with the binomial theorem. Motivated to look into this by the quoted paper of Wang and Zhang, eq. (1.4).
Alternating row sums are A057079.
The Z-sequence of this Riordan array is A217477, and the A-sequence is (-1)^n*A115141(n). For the notion of A- and Z-sequences for Riordan triangles see a W. Lang link under A006232. (End)
The signed triangle ((-1)^(k-s))*T(k,s) gives the coefficients of (x^2)^s of the polynomials C(2*k+1,x)/x, with C the monic integer Chebyshev T-polynomials whose coefficients are given in A127672 (C is there called R). See the odd numbered rows there. This signed triangle is the Riordan array ((1-x)/(1+x)^2, x/(1+x)^2). Proof by comparing the o.g.f. of the row polynomials where x is replaced by x^2 with the odd part of the bisection of the o.g.f. for C(n,x)/x. - Wolfdieter Lang, Oct 23 2012
From Wolfdieter Lang, Oct 04 2013: (Start)
The signed triangle S(k,s) := ((-1)^(k-s))*T(k,s) (see the preceding comment) is used to express in a (4*(k+1))-gon the length ratio s(4*(k+1)) = 2*sin(Pi/4*(k+1)) = 2*cos((2*k+1)*Pi/(4*(k+1))) of a side/radius as a polynomial in rho(4*(k+1)) = 2*cos(Pi/4*(k+1)), the length ratio (smallest diagonal)/side:
s(4*(k+1)) = Sum_{s=0..k} ( S(k,s)*rho(4*(k+1))^(2*s+1) ).
This is to be computed modulo C(4*(k+1), rho(4*(k+1)) = 0, the minimal polynomial (see A187360) in order to obtain s(4*(k+1)) as an integer in the algebraic number field Q(rho(4*(k+1))) of degree delta(4*(k+1)) (see A055034). Thanks go to Seppo Mustonen for asking me to look into the problem of the square of the total length in a regular n-gon, where this formula is used in the even n case. See A127677 for the formula in the (4*k+2)-gon. (End)
From Wolfdieter Lang, Aug 14 2014: (Start)
The row polynomials for the signed triangle (see the Oct 23 2012 comment above), call them todd(k,x) = Sum_{s=0..k} ( (-1)^(k-s)*T(k,s)*x^s ) = S(k, x-2) - S(k-1, x-2), k >= 0, with the Chebyshev S-polynomials (see their coefficient triangle (A049310) and S(-1, x) = 0), satisfy the recurrence todd(k, x) = (-1)^(k-1)*((x-4)/2)*todd(k-1, 4-x) + ((x-2)/2)*todd(k-1, x), k >= 1, todd(0, x) = 1. From the Aug 03 2014 comment on A130777.
This leads to a recurrence for the signed triangle, call it S(k,s) as in the Oct 04 2013 comment: S(k,s) = (1/2)*(1 + (-1)^(k-s))*S(k-1,s-1) + (2*(s+1)*(-1)^(k-s) - 1)*S(k-1,s) + (1/2)*(-1)^(k-s)*Sum_{j=0..k-s-2} ( binomial(j+s+2,s)*4^(j+2)* S(k-1, s+1+j) ) for k >= s >= 1, and S(k,s) = 0 if k < s and S(k,0) = (-1)^k*(2*k+1). Note that the recurrence derived from the Riordan A-sequence A115141 is similar but has simpler coefficients: S(k,s) = sum(A115141(j)*S(k-1,s-1+j), j=0..k-s), k >= s >=1.
(End)
From Tom Copeland, Nov 07 2015: (Start)
Rephrasing notes here: Append an initial column of zeros, except for a 1 at the top, to A111125 here. Then the partial sums of the columns of this modified entry are contained in A208513. Append an initial row of zeros to A208513. Then the difference of consecutive pairs of rows of the modified A208513 generates the modified A111125. Cf. A034807 and A127677.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 20 and 21) and Damianou and Evripidou (p. 7).
As suggested by the equations on p. 7 of Damianou and Evripidou, the signed row polynomials of this entry are given by (p(n,x))^2 = (A(2*n+1, x) + 2)/x = (F(2*n+1, (2-x), 1, 0, 0, ... ) + 2)/x = F(2*n+1, -x, 2*x, -3*x, ..., (-1)^n n*x)/x = -F(2*n+1, x, 2*x, 3*x, ..., n*x)/x, where A(n,x) are the polynomials of A127677 and F(n, ...) are the Faber polynomials of A263196. Cf. A127672 and A127677.
(End)
The row polynomials P(k, x) of the signed triangle S(k, s) = ((-1)^(k-s))*T(k, s) are given from the row polynomials R(2*k+1, x) of triangle A127672 by
P(k, x) = R(2*k+1, sqrt(x))/sqrt(x). - Wolfdieter Lang, May 02 2021

Examples

			Triangle T(k,s) begins:
k\s  0    1     2     3     4     5     6    7    8   9 10
0:   1
1:   3    1
2:   5    5     1
3:   7   14     7     1
4:   9   30    27     9     1
5:  11   55    77    44    11     1
6:  13   91   182   156    65    13     1
7:  15  140   378   450   275    90    15    1
8:  17  204   714  1122   935   442   119   17    1
9:  19  285  1254  2508  2717  1729   665  152   19   1
10: 21  385  2079  5148  7007  5733  2940  952  189  21  1
... Extended and reformatted by _Wolfdieter Lang_, Oct 18 2012
Application for Fibonacci numbers F_{(2*k+1)*n}, row k=3:
F_{7*n} = 7*(-1)^(3*n)*F_n + 14*(-1)^(4*n)*5*F_n^3 + 7*(-1)^(5*n)*5^2*F_n^5 + 1*(-1)^(6*n)*5^3*F_n^7, n>=0. - _Wolfdieter Lang_, Aug 24 2012
Example for the  Z- and A-sequence recurrences  of this Riordan triangle: Z = A217477 = [3,-4,12,-40,...]; T(4,0) = 3*7 -4*14 +12*7 -40*1 = 9. A =  [1, 2, -1, 2, -5, 14, ..]; T(5,2) = 1*30 + 2*27 - 1*9 + 2*1= 77. _Wolfdieter Lang_, Oct 18 2012
Example for the (4*(k+1))-gon length ratio s(4*(k+1))(side/radius) as polynomial in the ratio rho(4*(k+1)) ((smallest diagonal)/side): k=0, s(4) = 1*rho(4) = sqrt(2); k=1, s(8) = -3*rho(8) + rho(8)^3 = sqrt(2-sqrt(2)); k=2, s(12) = 5*rho(12) - 5*rho(12)^3 + rho(12)^5, and C(12,x) = x^4 - 4*x^2 + 1, hence rho(12)^5 = 4*rho(12)^3 - rho(12), and s(12) = 4*rho(12) - rho(12)^3 = sqrt(2 - sqrt(3)). - _Wolfdieter Lang_, Oct 04 2013
Example for the recurrence for the signed triangle S(k,s)= ((-1)^(k-s))*T(k,s) (see the Aug 14 2014 comment above):
S(4,1) = 0 + (-2*2 - 1)*S(3,1) - (1/2)*(3*4^2*S(3,2) + 4*4^3*S(3,3)) = - 5*14 - 3*8*(-7) - 128*1 = -30. The recurrence from the Riordan A-sequence A115141 is S(4,1) = -7 -2*14 -(-7) -2*1 = -30. - _Wolfdieter Lang_, Aug 14 2014
		

Crossrefs

Mirror image of A082985, which see for further references, etc.
Also closely related to triangles in A098599 and A100218.

Programs

  • Magma
    [((2*n+1)/(n+k+1))*Binomial(n+k+1, 2*k+1): k in [0..n], n in [0..12]];  // G. C. Greubel, Feb 01 2022
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *) (* Clark Kimberling, Feb 28 2012 *)
    (* Second program *)
    T[n_, k_]:= ((2*n+1)/(2*k+1))*Binomial[n+k, 2*k];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 01 2022 *)
  • Sage
    @CachedFunction
    def T(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 3*T(n-1,k) if n==1 else 2*T(n-1,k)
        return T(n-1,k-1) - T(n-2,k) - h
    A111125 = lambda n,k: (-1)^(n-k)*T(n,k)
    for n in (0..9): [A111125(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(k,s) = ((2*k+1)/(2*s+1))*binomial(k+s,2*s), 0 <= s <= k.
From Peter Bala, Apr 30 2012: (Start)
T(n,k) = binomial(n+k,2*k) + 2*binomial(n+k,2*k+1).
The row generating polynomials P(n,x) are a generalization of the Morgan-Voyce polynomials b(n,x) and B(n,x). They satisfy the recurrence equation P(n,x) = (x+2)*P(n-1,x) - P(n-2,x) for n >= 2, with initial conditions P(0,x) = 1, P(1,x) = x+r+1 and with r = 2. The cases r = 0 and r = 1 give the Morgan-Voyce polynomials A085478 and A078812 respectively. Andre-Jeannin has considered the case of general r.
P(n,x) = U(n+1,1+x/2) + U(n,1+x/2), where U(n,x) denotes the Chebyshev polynomial of the second kind - see A053117. P(n,x) = (2/x)*(T(2*n+2,u)-T(2*n,u)), where u = sqrt((x+4)/4) and T(n,x) denotes the Chebyshev polynomial of the first kind - see A053120. P(n,x) = Product_{k = 1..n} ( x + 4*(sin(k*Pi/(2*n+1)))^2 ). P(n,x) = 1/x*(b(n+1,x) - b(n-1,x)) and P(n,x) = 1/x*{(b(2*n+2,x)+1)/b(n+1,x) - (b(2*n,x)+1)/b(n,x)}, where b(n,x) := Sum_{k = 0..n} binomial(n+k,2*k)*x^k are the Morgan-Voyce polynomials of A085478. Cf. A211957.
(End)
From Wolfdieter Lang, Oct 18 2012 (Start)
O.g.f. column No. s: ((1+x)/(1-x)^2)*(x/(1-x)^2)^s, s >= 0. (from the Riordan data given in a comment above).
O.g.f. of the row polynomials R(k,x):= Sum_{s=0..k} ( T(k,s)*x^s ), k>=0: (1+z)/(1-(2+x)*z+z^2) (from the Riordan property).
(End)
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 3, T(1,1) = 1, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013

Extensions

More terms from Paul Barry, Oct 17 2005

A053122 Triangle of coefficients of Chebyshev's S(n,x-2) = U(n,x/2-1) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, -2, 1, 3, -4, 1, -4, 10, -6, 1, 5, -20, 21, -8, 1, -6, 35, -56, 36, -10, 1, 7, -56, 126, -120, 55, -12, 1, -8, 84, -252, 330, -220, 78, -14, 1, 9, -120, 462, -792, 715, -364, 105, -16, 1, -10, 165, -792, 1716, -2002, 1365, -560, 136, -18, 1, 11, -220, 1287, -3432, 5005, -4368, 2380, -816, 171, -20
Offset: 0

Views

Author

Keywords

Comments

Apart from signs, identical to A078812.
Another version with row-leading 0's and differing signs is given by A285072.
G.f. for row polynomials S(n,x-2) (signed triangle): 1/(1+(2-x)*z+z^2). Unsigned triangle |a(n,m)| has g.f. 1/(1-(2+x)*z+z^2) for row polynomials.
Row sums (signed triangle) A049347(n) (periodic(1,-1,0)). Row sums (unsigned triangle) A001906(n+1)=F(2*(n+1)) (even-indexed Fibonacci).
In the language of Shapiro et al. (see A053121 for the reference) such a lower triangular (ordinary) convolution array, considered as a matrix, belongs to the Bell-subgroup of the Riordan-group.
The (unsigned) column sequences are A000027, A000292, A000389, A000580, A000582, A001288 for m=0..5, resp. For m=6..23 they are A010966..(+2)..A011000 and for m=24..49 they are A017713..(+2)..A017763.
Riordan array (1/(1+x)^2,x/(1+x)^2). Inverse array is A039598. Diagonal sums have g.f. 1/(1+x^2). - Paul Barry, Mar 17 2005. Corrected by Wolfdieter Lang, Nov 13 2012.
Unsigned version is in A078812. - Philippe Deléham, Nov 05 2006
Also row n gives (except for an overall sign) coefficients of characteristic polynomial of the Cartan matrix for the root system A_n. - Roger L. Bagula, May 23 2007
From Wolfdieter Lang, Nov 13 2012: (Start)
The A-sequence for this Riordan triangle is A115141, and the Z-sequence is A115141(n+1), n>=0. For A- and Z-sequences for Riordan matrices see the W. Lang link under A006232 with details and references.
S(n,x^2-2) = sum(r(j,x^2),j=0..n) with Chebyshev's S-polynomials and r(j,x^2) := R(2*j+1,x)/x, where R(n,x) are the monic integer Chebyshv T-polynomials with coefficients given in A127672. Proof from comparing the o.g.f. of the partial sum of the r(j,x^2) polynomials (see a comment on the signed Riordan triangle A111125) with the present Riordan type o.g.f. for the row polynomials with x -> x^2. (End)
S(n,x^2-2) = S(2*n+1,x)/x, n >= 0, from the odd part of the bisection of the o.g.f. - Wolfdieter Lang, Dec 17 2012
For a relation to a generator for the Narayana numbers A001263, see A119900, whose columns are unsigned shifted rows (or antidiagonals) of this array, referring to the tables in the example sections. - Tom Copeland, Oct 29 2014
The unsigned rows of this array are alternating rows of a mirrored A011973 and alternating shifted rows of A030528 for the Fibonacci polynomials. - Tom Copeland, Nov 04 2014
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): a(n, m) = (2*(m + 1)/(n - m))*Sum_{k = m..n-1} (-1)^(n-k)*a(k, m), with input a(n, n) = 1, and a(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020
Row n gives the characteristic polynomial of the (n X n)-matrix M where M[i,j] = 2 if i = j, -1 if |i-j| = 1 and 0 otherwise. The matrix M is positive definite and has 2-condition number (cot(Pi/(2*n+2)))^2. - Jianing Song, Jun 21 2022
Also the convolution triangle of (-1)^(n+1)*n. - Peter Luschny, Oct 07 2022

Examples

			The triangle a(n,m) begins:
n\m   0    1    2     3     4     5     6    7    8  9
0:    1
1:   -2    1
2:    3   -4    1
3:   -4   10   -6     1
4:    5  -20   21    -8     1
5:   -6   35  -56    36   -10     1
6:    7  -56  126  -120    55   -12     1
7:   -8   84 -252   330  -220    78   -14    1
8:    9 -120  462  -792   715  -364   105  -16    1
9:  -10  165 -792  1716 -2002  1365  -560  136  -18  1
... Reformatted and extended by _Wolfdieter Lang_, Nov 13 2012
E.g., fourth row (n=3) {-4,10,-6,1} corresponds to the polynomial S(3,x-2) = -4+10*x-6*x^2+x^3.
From _Wolfdieter Lang_, Nov 13 2012: (Start)
Recurrence: a(5,1) = 35 = 1*5 + (-2)*(-20) -1*(10).
Recurrence from Z-sequence [-2,-1,-2,-5,...]: a(5,0) = -6 = (-2)*5 + (-1)*(-20) + (-2)*21 + (-5)*(-8) + (-14)*1.
Recurrence from A-sequence [1,-2,-1,-2,-5,...]: a(5,1) = 35 = 1*5  + (-2)*(-20) + (-1)*21 + (-2)*(-8) + (-5)*1.
(End)
E.g., the fourth row (n=3) {-4,10,-6,1} corresponds also to the polynomial S(7,x)/x = -4 + 10*x^2 - 6*x^4 + x^6. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -56 = a(5, 2) = 2*(-1*1 + 1*(-6) - 1*21) = -2*28 = -56. - _Wolfdieter Lang_, Jun 03 2020
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 795.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
  • R. N. Cahn, Semi-Simple Lie Algebras and Their Representations, Dover, NY, 2006, ISBN 0-486-44999-8, p. 62.
  • Sigurdur Helgasson, Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, volume 34. A. M. S.: ISBN 0-8218-2848-7, 1978, p. 463.

Crossrefs

Cf. A285072 (version with row-leading 0's and differing signs). - Eric W. Weisstein, Apr 09 2017

Programs

  • Maple
    seq(seq((-1)^(n+m)*binomial(n+m+1,2*m+1),m=0..n),n=0..10); # Robert Israel, Oct 15 2014
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> -(-1)^n*n); # Peter Luschny, Oct 07 2022
  • Mathematica
    T[n_, m_, d_] := If[ n == m, 2, If[n == m - 1 || n == m + 1, -1, 0]]; M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}]; a = Join[M[1], Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]]; Flatten[a] (* Roger L. Bagula, May 23 2007 *)
    (* Alternative code for the matrices from MathWorld: *)
    sln[n_] := 2IdentityMatrix[n] - PadLeft[PadRight[IdentityMatrix[n - 1], {n, n - 1}], {n, n}] - PadLeft[PadRight[IdentityMatrix[n - 1], {n - 1, n}], {n, n}] (* Roger L. Bagula, May 23 2007 *)
  • Sage
    @CachedFunction
    def A053122(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A053122(n-1,k-1)-A053122(n-2,k)-2*A053122(n-1,k)
    for n in (0..9): [A053122(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

a(n, m) := 0 if n
a(n, m) = -2*a(n-1, m) + a(n-1, m-1) - a(n-2, m), a(n, -1) := 0 =: a(-1, m), a(0, 0)=1, a(n, m) := 0 if n
O.g.f. for m-th column (signed triangle): ((x/(1+x)^2)^m)/(1+x)^2.
From Jianing Song, Jun 21 2022: (Start)
T(n,k) = [x^k]f_n(x), where f_{-1}(x) = 0, f_0(x) = 1, f_n(x) = (x-2)*f_{n-1}(x) - f_{n-2}(x) for n >= 2.
f_n(x) = (((x-2+sqrt(x^2-4*x))/2)^(n+1) - ((x-2-sqrt(x^2-4*x))/2)^(n+1))/sqrt(x^2-4x).
The roots of f_n(x) are 2 + 2*cos(k*Pi/(n+1)) = 4*(cos(k*Pi/(2*n+2)))^2 for 1 <= k <= n. (End)

A069271 a(n) = binomial(4*n+1,n)*2/(3*n+2).

Original entry on oeis.org

1, 2, 9, 52, 340, 2394, 17710, 135720, 1068012, 8579560, 70068713, 580034052, 4855986044, 41043559340, 349756577100, 3001701610320, 25921837477692, 225083787458904, 1963988670706228, 17211860478150800, 151433425446423120
Offset: 0

Author

Henry Bottomley, Mar 12 2002

Keywords

Comments

This sequence counts the set B_n of plane trees defined in the Poulalhon and Schaeffer link (Definition 2.2 and Section 4.2, Proposition 4). - David Callan, Aug 20 2014
a(n) is the number of lattice paths of length 4n starting and ending on the x-axis consisting of steps {(1, 1), (1, -3)} that remain on or above the line y=-1. - Sarah Selkirk, Mar 31 2020
a(n) is the number of ordered pairs of 4-ary trees with a (summed) total of n internal nodes. - Sarah Selkirk, Mar 31 2020

Examples

			a(3) = C(4*3+1,3)*2/(3*3+2) = C(13,3)*2/11 = 286*2/11 = 52.
a(3) = 52 since the top row of M^3 = (22, 22, 7, 1).
1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 + 17710*x^6 + 135720*x^7 + ...
q + 2*q^3 + 9*q^5 + 52*q^7 + 340*q^9 + 2394*q^11 + 17710*q^13 + 135720*q^15 + ...
		

Crossrefs

Cf. A002293, A006013, A006632, A069270 for similar generalized Catalan sequences.

Programs

  • Magma
    [2*Binomial(4*n+1, n)/(3*n+2): n in [0..20]];  // Bruno Berselli, Mar 04 2011
  • Maple
    BB:=[T,{T=Prod(Z,Z,Z,F,F),F=Sequence(B),B=Prod(F,F,F,Z)}, unlabeled]: seq(count(BB,size=i),i=3..23); # Zerinvary Lajos, Apr 22 2007
  • Mathematica
    f[n_] := 2 Binomial[4 n + 1, n]/(3 n + 2); Array[f, 21, 0] (* Robert G. Wilson v *)
  • PARI
    a(n)=if(n<0,0,polcoeff(serreverse(x/(1+x^2)^2+O(x^(2*n+2))),2*n+1)) /* Ralf Stephan */
    
  • PARI
    {a(n) =  binomial(4*n + 2, n)*2 / (2*n + 1)} /* Michael Somos, Mar 28 2012 */
    
  • PARI
    {a(n) =  local(A); if( n<0, 0, A = 1 + O(x); for( k=1, n, A = (1 + x * A^2)^2); polcoeff( A, n))} /* Michael Somos, Mar 28 2012 */
    

Formula

a(n) = A069270(n+1, n) = A005810(n)*A016813(n)/A060544(n+1)
O.g.f. A(x) satisfies 2*x^2*A(x)^3 = 1-2*x*A(x)-sqrt(1-4*x*A(x)). - Vladimir Kruchinin, Feb 23 2011
a(n) is the sum of top row terms in M^n, where M is the infinite square production matrix with the triangular series in each column as follows, with the rest zeros:
1, 1, 0, 0, 0, 0, ...
3, 3, 1, 0, 0, 0, ...
6, 6, 3, 1, 0, 0, ...
10, 10, 6, 3, 1, 0, ...
15, 15, 10, 6, 3, 1, ...
... - Gary W. Adamson, Aug 11 2011
Given g.f. A(x) then B(x) = x * A(x^2) satisfies x = B(x) / (1 + B(x)^2)^2. - Michael Somos, Mar 28 2012
Given g.f. A(x) then A(x) = (1 + x * A(x)^2)^2. - Michael Somos, Mar 28 2012
a(n) / (n+1) = A000260(n). - Michael Somos, Mar 28 2012
REVERT transform is A115141. - Michael Somos, Mar 28 2012
D-finite with recurrence 3*n*(3*n+2)*(3*n+1)*a(n) - 8*(4*n+1)*(2*n-1)*(4*n-1)*a(n-1) = 0. - R. J. Mathar, Jun 07 2013
a(n) = 2*binomial(4n+1,n-1)/n for n>0, a(0)=1. - Bruno Berselli, Jan 19 2014
G.f.: hypergeom([1/2, 3/4, 5/4], [4/3, 5/3], (256/27)*x). - Robert Israel, Aug 24 2014
From Peter Bala, Oct 08 2015: (Start)
O.g.f. A(x) = (1/x) * series reversion (x/C(x)^2), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. Cf. A163456.
(1/2)*x*A'(x)/A(x) is the o.g.f. for A224274. (End)
E.g.f.: hypergeom([1/2, 3/4, 5/4], [1, 4/3, 5/3], (256/27)*x). - Karol A. Penson, Jun 26 2017
a(n) = binomial(4*n+2,n)/(2*n+1). - Alexander Burstein, Nov 08 2021

A158454 Riordan array (1/(1-x^2), x/(1+x)^2).

Original entry on oeis.org

1, 0, 1, 1, -2, 1, 0, 4, -4, 1, 1, -6, 11, -6, 1, 0, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 0, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 0, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1
Offset: 0

Author

Paul Barry, Mar 19 2009

Keywords

Comments

Coefficient table of the square of Chebyshev S-polynomials. For the S-polynomials see A049310, and for a proof see the array A181878, where the odd numbered rows are shifted by one to the left. - Wolfdieter Lang, Dec 15 2010
Image of the Catalan numbers A000108 by this matrix is the all 1's sequence.
Image of the central binomial numbers A000984 by this matrix is the counting numbers A000027.
Inverse array is the Riordan array (1-x^2*c(x)^4, xc(x)^2), where c(x) is the g.f. of A000108.
The row polynomials R(n, x) = Sum_{k=0..n} T(n, k)*x^k belong to the class of Boas-Buck polynomials. Hence they satisfy the Boas-Buck identity: (E_x - n*1)*R(n, x) = -Sum_{p=0..n-1} ((1 - (-1)^p)*1 + 2*(-1)^(p+1)*E_x) R(n-1-p, x) for n >= 0. See the Boas-Buck comments and references in A046521. The ensuing recurrence for the column sequences is given in the formula section. - Wolfdieter Lang, Aug 10 2017

Examples

			The triangle T(n,k) begins:
  n\k  0   1    2     3     4      5     6     7    8    9  10...
  0:   1
  1:   0   1
  2:   1  -2    1
  3:   0   4   -4     1
  4:   1  -6   11    -6     1
  5:   0   9  -24    22    -8      1
  6:   1 -12   46   -62    37    -10     1
  7:   0  16  -80   148  -128     56   -12     1
  8:   1 -20  130  -314   367   -230    79   -14    1
  9:   0  25 -200   610  -920    771  -376   106  -16    1
  10:  1 -30  295 -1106  2083  -2232  1444  -574  137  -18   1
  ... Reformatted and extended by _Wolfdieter Lang_, Nov 24 2012
Recurrences (from A- and Z-sequences):
  1 = T(6,0) = 0*0 + 1*9 +2*(-24) + 5*22 + 14*(-8)+ 42*1.
-80 = T(7,2) = 1*(-12) -2*(46) -1*(-62) -2*37 -5*(-10) -14*1. - _Wolfdieter Lang_, Dec 20 2010
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.

Crossrefs

From Wolfdieter Lang, Aug 10 2017: (Start)
Row sums A011655(n+1), alternating row sums A007598(n+1)*(-1)^(n+1).
Column sequences k=0..5: A059841, A002620(n+2)*(-1)^(n), A001752(n)*(-1)^n, A001769(n)*(-1)^n, A001780(n)*(-1)^n, A001786(n)*(-1)^n. (End)

Programs

  • GAP
    T:=Flat(List([0..10], n->List([0..n], k->Sum([0..n], j-> (-1)^(j-k)*Binomial(k+j, 2*k))))); # G. C. Greubel, Dec 15 2018
  • Magma
    [[(&+[(-1)^(j-k)*Binomial(k+j, 2*k): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Dec 15 2018
    
  • Maple
    A158454 := proc(n,k) (-1)^(n+k)*add(binomial(n+k-1-2*j,2*k-1),j=0..floor(n/2)) ; end proc;
    seq(seq(A158454(n,k),k=0..n),n=0..10) ; # R. J. Mathar, Dec 17 2010
  • Mathematica
    nmax = 10; t[n_, k_] := (-1)^(n+k)* Sum[Binomial[n+k-1-2*j, 2*k-1], {j, 0, Floor[n/2]}]; t[n_?EvenQ, 0] = 1; Flatten[ Table[ t[n, k], {n, 0, nmax}, {k, 0, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *)
    With[{m = 15}, CoefficientList[CoefficientList[Series[(1+x)/((1-x)*(1 + x)^2 -t*x*(1-x)), {x, 0, m}, {t, 0, m}], x], t]]//Flatten (* G. C. Greubel, Dec 15 2018 *)
    T[n_, 0] := Boole[EvenQ[n]]; T[n_, k_] := (-1)^(n - k) Binomial[k+n-1, 2*k-1] HypergeometricPFQ[{1, (k - n)/2, (1 + k - n)/2}, {(1 - k - n)/2, (2 - k - n)/2}, 1]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // TableForm  (* Peter Luschny, Aug 20 2022 *)
  • PARI
    {T(n,k) = sum(j=0,n, (-1)^(j-k)*binomial(k+j, 2*k))};
    for(n=0, 10, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Dec 15 2018
    
  • Sage
    [[sum((-1)^(j-k)*binomial(k+j, 2*k) for j in range(n+1)) for k in range(n+1)] for n in range(10)] # G. C. Greubel, Dec 15 2018
    

Formula

Number triangle T(n, k) = Sum_{j=0..n} (-1)^(j-k)*binomial(k+j, 2*k) = Sum_{j=0..n-k} (-1)^(n-k-j)*binomial(n+k-j, 2*k).
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1-x^2))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
T(n, k) = (-1)^(n-k)*Sum_{j=0..floor(n/2)} binomial(n+k-1-2*j, 2*k-1), 0 <= k <= n, else 0. From the o.g.f. for column k after convolution. - Wolfdieter Lang, Dec 17 2010
O.g.f. row polynomials (rising powers in y): ((1+x)/(1-x))/(1+(2-y)*x+x^2) = Sum_{n>=0} S(n,sqrt(y))^2*x^n, with Chebyshev S-polynomials from A049310. - Wolfdieter Lang, Dec 15 2010
Recurrences from the A- and Z-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n, 0) = Sum_{j=0..n-1} Z(j)*T(n-1, j), n >= 1.
T(n, k) = Sum_{j=0..n-k} A(j)*T(n-1, k-1+j), n >= k >= 1.
Here Z(0)=0 and Z(j) = A000108(j), j >= 1, (o.g.f. -1 + c(x), with the Catalan o.g.f. c(x)), and A(j) = A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0, with o.g.f. 1/c(x)^2. - Wolfdieter Lang, Dec 20 2010
T(n, k) = Sum_{m=0..n} A129818(m, k), 0 <= k <= n. - Wolfdieter Lang, Dec 15 2010
Boas-Buck recurrence for column k: R(n, k) = (1/(n-k))*Sum_{p=k..n-1}((-1)^(n-p)*(2*k+1) + 1) * R(p, k), for n > k >= 0, with input R(k, k) = 1. See a comment above. - Wolfdieter Lang, Aug 10 2017
G.f.: (1 + x)/((1 - x)*(1 + x)^2 - t*x*(1 - x)). - G. C. Greubel, Dec 15 2018
T(n, k) = (-1)^(n - k)*binomial(k + n - 1, 2*k-1)*hypergeom([1, (k - n)/2, (1 + k - n)/2], [(1 - k - n)/2, (2 - k - n)/2], 1) for k >= 1 . - Peter Luschny, Aug 20 2022

A115140 O.g.f. inverse of Catalan A000108 o.g.f.

Original entry on oeis.org

1, -1, -1, -2, -5, -14, -42, -132, -429, -1430, -4862, -16796, -58786, -208012, -742900, -2674440, -9694845, -35357670, -129644790, -477638700, -1767263190, -6564120420, -24466267020, -91482563640, -343059613650, -1289904147324, -4861946401452, -18367353072152
Offset: 0

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Crossrefs

See A034807 and A115149 for comments.
For convolutions of this sequence see A115141-A115149.

Formula

O.g.f.: 1/c(x) = 1-x*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers).
a(0) = 1, a(n) = -C(n-1), n>=1, with C(n):=A000108(n) (Catalan).
G.f.: (1 + sqrt(1-4*x))/2=U(0) where U(k)=1 - x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 1/G(0) where G(k) = 1 - x/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2012
G.f.: G(0), where G(k)= 2*x*(2*k+1) + k + 1 - 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. a(n) = A002420(n)/2, n>0. - R. J. Mathar, Aug 09 2015
a(n) ~ -2^(2*n-2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 06 2021

A129818 Riordan array (1/(1+x), x/(1+x)^2), inverse array is A039599.

Original entry on oeis.org

1, -1, 1, 1, -3, 1, -1, 6, -5, 1, 1, -10, 15, -7, 1, -1, 15, -35, 28, -9, 1, 1, -21, 70, -84, 45, -11, 1, -1, 28, -126, 210, -165, 66, -13, 1, 1, -36, 210, -462, 495, -286, 91, -15, 1, -1, 45, -330, 924, -1287, 1001, -455, 120, -17, 1, 1, -55, 495, -1716, 3003, -3003, 1820, -680, 153, -19, 1
Offset: 0

Author

Philippe Deléham, Jun 09 2007

Keywords

Comments

This sequence is up to sign the same as A129818. - T. D. Noe, Sep 30 2011
Row sums: A057078. - Philippe Deléham, Jun 11 2007
Subtriangle of the triangle given by (0, -1, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 19 2012
This triangle provides the coefficients of powers of x^2 for the even-indexed Chebyshev S polynomials (see A049310): S(2*n,x) = Sum_{k=0..n} T(n,k)*x^(2*k), n >= 0. - Wolfdieter Lang, Dec 17 2012
If L(x^n) := C(n) = A000108(n) (Catalan numbers), then the polynomials P_n(x) := Sum_{k=0..n} T(n,k)*x^k are orthogonal with respect to the inner product given by (f(x),g(x)) := L(f(x)*g(x)). - Michael Somos, Jan 03 2019

Examples

			Triangle T(n,k) begins:
  n\k  0   1    2     3     4     5    6    7    8   9 10 ...
   0:  1
   1: -1   1
   2:  1  -3    1
   3: -1   6   -5     1
   4:  1 -10   15    -7     1
   5: -1  15  -35    28    -9     1
   6:  1 -21   70   -84    45   -11    1
   7: -1  28 -126   210  -165    66  -13    1
   8:  1 -36  210  -462   495  -286   91  -15    1
   9: -1  45 -330   924 -1287  1001 -455  120  -17   1
  10:  1 -55  495 -1716  3003 -3003 1820 -680  153 -19  1
  ... Reformatted by _Wolfdieter Lang_, Dec 17 2012
Recurrence from the A-sequence A115141:
15 = T(4,2) = 1*6 + (-2)*(-5) + (-1)*1.
(0, -1, 0, -1, 0, 0, ...) DELTA (1, 0, 1, -1, 0, 0, ...) begins:
  1
  0,  1
  0, -1,   1
  0,  1,  -3,   1
  0, -1,   6,  -5,  1
  0,  1, -10,  15, -7,  1
  0, -1,  15, -35, 28, -9, 1. - _Philippe Deléham_, Mar 19 2012
Row polynomial for n=3 in terms of x^2: S(6,x) = -1 + 6*x^2 -5*x^4 + 1*x^6, with Chebyshev's S polynomial. See a comment above. - _Wolfdieter Lang_, Dec 17 2012
Boas-Buck type recurrence: -35 = T(5,2) = (5/3)*(-1*1 +1*(-5) - 1*15) = -3*7 = -35. - _Wolfdieter Lang_, Jun 03 2020
		

Crossrefs

Programs

  • Maple
    # The function RiordanSquare is defined in A321620.
    RiordanSquare((1 - sqrt(1 - 4*x))/(2*x), 10):
    LinearAlgebra[MatrixInverse](%); # Peter Luschny, Jan 04 2019
  • Mathematica
    max = 10; Flatten[ CoefficientList[#, y] & /@ CoefficientList[ Series[ (1 + x)/(1 + (2 - y)*x + x^2), {x, 0, max}], x]] (* Jean-François Alcover, Sep 29 2011, after Wolfdieter Lang *)
  • Sage
    @CachedFunction
    def A129818(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = A129818(n-1,k) if n==1 else 2*A129818(n-1,k)
        return A129818(n-1,k-1) - A129818(n-2,k) - h
    for n in (0..9): [A129818(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^(n-k)*A085478(n,k) = (-1)^(n-k)*binomial(n+k,2*k).
Sum_{k=0..n} T(n,k)*A000531(k) = n^2, with A000531(0)=0. - Philippe Deléham, Jun 11 2007
Sum_{k=0..n} T(n,k)*x^k = A033999(n), A057078(n), A057077(n), A057079(n), A005408(n), A002878(n), A001834(n), A030221(n), A002315(n), A033890(n), A057080(n), A057081(n), A054320(n), A097783(n), A077416(n), A126866(n), A028230(n+1) for x = 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, respectively. - Philippe Deléham, Nov 19 2009
O.g.f.: (1+x)/(1+(2-y)*x+x^2). - Wolfdieter Lang, Dec 15 2010
O.g.f. column k with leading zeros (Riordan array, see NAME): (1/(1+x))*(x/(1+x)^2)^k, k >= 0. - Wolfdieter Lang, Dec 15 2010
From Wolfdieter Lang, Dec 20 2010: (Start)
Recurrences from the Z- and A-sequences for Riordan arrays. See the W. Lang link under A006232 for details and references.
T(n,0) = -1*T(n-1,0), n >= 1, from the o.g.f. -1 for the Z-sequence (trivial result).
T(n,k) = Sum_{j=0..n-k} A(j)*T(n-1,k-1+j), n >= k >= 1, with A(j):= A115141(j) = [1,-2,-1,-2,-5,-14,...], j >= 0 (o.g.f. 1/c(x)^2 with the A000108 (Catalan) o.g.f. c(x)). (End)
T(n,k) = (-1)^n*A123970(n,k). - Philippe Deléham, Feb 18 2012
T(n,k) = -2*T(n-1,k) + T(n-1,k-1) - T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = -1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Mar 19 2012
A039599(m,n) = Sum_{k=0..n} T(n,k) * C(k+m) where C(n) are the Catalan numbers. - Michael Somos, Jan 03 2019
Equals the matrix inverse of the Riordan square (cf. A321620) of the Catalan numbers. - Peter Luschny, Jan 04 2019
Boas-Buck type recurrence for column k >= 0 (see Aug 10 2017 comment in A046521 with references): T(n,k) = ((1 + 2*k)/(n - k))*Sum_{j = k..n-1} (-1)^(n-j)*T(j,k), with input T(n,n) = 1, and T(n,k) = 0 for n < k. - Wolfdieter Lang, Jun 03 2020

A115142 Third convolution of A115140.

Original entry on oeis.org

1, -3, 0, -1, -3, -9, -28, -90, -297, -1001, -3432, -11934, -41990, -149226, -534888, -1931540, -7020405, -25662825, -94287120, -347993910, -1289624490, -4796857230, -17902146600, -67016296620, -251577050010, -946844533674, -3572042254128, -13505406670700
Offset: 0

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (2*(1-2*x)-(1-x)*(1-Sqrt(1-4*x)))/2 )); // G. C. Greubel, Feb 12 2019
    
  • Mathematica
    CoefficientList[Series[(2*(1-2*x)-(1-x)*(1-Sqrt[1-4*x]))/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((2*(1-2*x)-(1-x)*(1-sqrt(1-4*x)))/2) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    ((2*(1-2*x)-(1-x)*(1-sqrt(1-4*x)))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^3 = P(4, x) - x*P(3, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(4, x)=1-2*x and P(3, x)=1-x.
a(n) = -C3(n-3), n >= 3, with C3(n):= A000245(n+1) (third convolution of Catalan numbers). a(0)=1, a(1)=-3, a(2)=0. [1, -3] is the row n=3 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
D-finite with recurrence +n*(n-3)*a(n) -2*(n-2)*(2*n-5)*a(n-1)=0. - R. J. Mathar, Sep 23 2021
O.g.f.: (1/8)*(1 + sqrt(1 - 4*x))^3 = ( hypergeom([-1/4, -3/4], [-1/2], 4*x) )^2. - Peter Bala, Mar 04 2022

A115143 a(n) = -4*binomial(2*n-5, n-4)/n for n > 0 and a(0) = 1.

Original entry on oeis.org

1, -4, 2, 0, -1, -4, -14, -48, -165, -572, -2002, -7072, -25194, -90440, -326876, -1188640, -4345965, -15967980, -58929450, -218349120, -811985790, -3029594040, -11338026180, -42550029600, -160094486370, -603784920024, -2282138106804, -8643460269248, -32798844771700
Offset: 0

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Comments

Previous name: Fourth convolution of A115140.
a(n+4) := - convolution ( A000108(n+1) ), n=0,1,... - Tilman Neumann, Jan 05 2009
Self-convolution of A115141. - R. J. Mathar, Sep 26 2012

Crossrefs

Programs

  • Magma
    [1,-4,2] cat [-4*Binomial(2*n-5,n-4)/n: n in [3..30]]; // G. C. Greubel, Feb 12 2019
    
  • Maple
    A115143 := n -> `if`(n=0, 1, -4*binomial(2*n-5,n-4)/n):
    seq(A115143(n), n=0..28); # Peter Luschny, Feb 27 2017
    A115143List := proc(m) local A, P, n; A := [1,-4,2,0]; P := [-1,0];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(P), P[-1]]);
    A := [op(A), P[-1]] od; A end: A115143List(27); # Peter Luschny, Mar 26 2022
  • Mathematica
    Join[{1},Table[-4*Binomial[2n-5,n-4]/n,{n,30}]] (* Harvey P. Dale, Dec 01 2017 *)
    CoefficientList[Series[(1-4*x+2*x^2+(1-2*x)*Sqrt[1-4*x])/2, {x,0,30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-4*x+2*x^2 +(1-2*x)*sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    [1,-4,2] + [-4*binomial(2*n-5,n-4)/n for n in (3..30)] # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^4 = P(5, x) - x*P(4, x)*c(x) with the o.g.f. c(x) := (1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(5, x) = 1-3*x+x^2 and P(4, x) = 1-2*x.
a(n) = -C4(n-4), n>=4, with C4(n) := A002057(n) (fourth convolution of Catalan numbers). a(0)=1, a(1)=-4, a(2)=2, a(3)=0. [1, -4, 2] is row n=4 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
E.g.f.: 1 - 3*x + 1/2*x^2 - x*Q(0), where Q(k)= 1 - 2*x/(k+2 - (k+2)*(2*k+1)/(2*k+1 - (k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 28 2013
D-finite with recurrence n*(n-4)*a(n) -2*(2*n-5)*(n-3)*a(n-1)=0. - R. J. Mathar, Sep 15 2024

Extensions

Simpler name from Peter Luschny, Feb 27 2017

A158909 Riordan array (1/((1-x)(1-x^2)), x/(1-x)^2). Triangle read by rows, T(n,k) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 2, 7, 5, 1, 3, 13, 16, 7, 1, 3, 22, 40, 29, 9, 1, 4, 34, 86, 91, 46, 11, 1, 4, 50, 166, 239, 174, 67, 13, 1, 5, 70, 296, 553, 541, 297, 92, 15, 1, 5, 95, 496, 1163, 1461, 1068, 468, 121, 17, 1, 6, 125, 791, 2269, 3544, 3300, 1912, 695, 154, 19, 1
Offset: 0

Author

Paul Barry, Mar 30 2009

Keywords

Comments

Diagonal sums are the Jacobsthal numbers A001045.
Transforms r^n into the symmetric third-order sequence with g.f. 1/(1-(r+1)x-(r+1)x^2+x^3), see the formulas.
From Wolfdieter Lang, Oct 22 2019: (Start)
The signed triangle t(n, k) = (-1)^(n-k)*T(n, k) appears in the expansion [n+2, 2]q / q^n = Sum{k=0} t(n, k)*y^(2*k), with y = q^(1/2) + q^(-1/2), where [n+2, 2]_q are q-binomial coefficients (see A008967, but with a different offset). The formula is [n+2, 2]_q / q^n = S(n+1, y)*S(n, y)/y with Chebyshev S polynomials (A049310). This is a polynomial in y^2 but not in q after replacement of the given y = y(q).
The A-sequence for this Riordan triangle is A(n) = (-1)^n*A115141(n) with o.g.f A(x) = 1 + x*(1 + c(-x)), with c(x) generating A000108 (Catalan).
The Z-sequence is z(n) = (-1)^(n+1)*A071724(n), for n >= 1 and z(0) = 1. The o.g.f. is Z(x) = 1 + x*c(-x)^3. See A071724 for a link on A- and Z-sequences, and their use for the recurrence. (End)
T(n,k) is the number of tilings of a (2*n+1)-board (a 1 X (2*n+1) rectangular board) using 2*k+1 squares and 2*(n-k) (1,1)-fences. A (1,1)-fence is a tile composed of two squares separated by a gap of width 1. - Michael A. Allen, Mar 20 2021

Examples

			From _Wolfdieter Lang_, Oct 22 2019: (Start)
The triangle T(n, k) begins:
  n\k  0   1   2    3    4    5    6   7   8  9 10 ...
  ----------------------------------------------------
  0:   1
  1:   1   1
  2:   2   3   1
  3:   2   7   5    1
  4:   3  13  16    7    1
  5:   3  22  40   29    9    1
  6:   4  34  86   91   46   11    1
  7:   4  50 166  239  174   67   13   1
  8:   5  70 296  553  541  297   92  15   1
  9:   5  95 496 1163 1461 1068  468 121  17  1
  10:  6 125 791 2269 3544 3300 1912 695 154 19  1
  ...
----------------------------------------------------------------------------
Recurrence: T(5, 2) = 16 + 13 + 5 + 7 - 1 = 40, and T(5, 0) = 3 + 2 - 2 = 3. [using _Philippe Deléham_'s Nov 12 2013 recurrence]
Recurrence from A-sequence [1, 2, -1, 2, -5, ...]: T(5, 2) = 1*13 + 2*16 - 1*7 + 2*1 = 40.
Recurrence from Z-sequence [1, 1, -3, 9, -28, ...]: T(5, 0) = 1*3 + 1*13 - 3*16 + 9*7 - 28*1 = 3. (End)
		

Crossrefs

Programs

  • Magma
    [(&+[(-1)^(j+n-k)*Binomial(2*k+j+1, j): j in [0..n-k]]): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2021
  • Maple
    T := (n,k) -> binomial(k+n+2, n-k+1)*hypergeom([1, k+n+3], [n-k+2], -1) + (-1)^(n-k)/4^(k+1):
    seq(seq(simplify(T(n,k)), k=0..n), n=0..9); # Peter Luschny, Oct 31 2019
  • Mathematica
    Table[Sum[(-1)^(j+n-k)*Binomial[j+2*k+1, j], {j,0,n-k}], {n,0,12}, {k,0,n}] // Flatten (* G. C. Greubel, Mar 18 2021 *)
  • Sage
    flatten([[sum((-1)^(j+n-k)*binomial(j+2*k+1, j) for j in (0..n-k)) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2021
    

Formula

Sum_{k=0..n} T(n,k) = Fibonacci(n+1)*Fibonacci(n+2) = A001654(n+1).
From Johannes W. Meijer, Jul 20 2011: (Start)
T(n, k) = Sum_{i=0..n-k} (-1)^(i+n-k) * binomial(i+2*k+1, i).
T(n, k) = A035317(n+k, n-k) = A092879(n, n-k).
Sum_{k=0..n} T(n, k)*r^k = coeftayl(1/(1-(r+1)*x-(r+1)*x^2+x^3), x=0, n). [Barry] (End)
T(n, k) = T(n-1, k) + T(n-1, k-1) + T(n-2, k) + T(n-2, k-1) - T(n-3, k), T(0, 0) = 1, T(n, k) = 0 if k<0 or if k>n. - Philippe Deléham, Nov 12 2013
From Wolfdieter Lang, Oct 22 2019: (Start)
O.g.f. for the row polynomials (that is for the triangle): G(z, x) = 1/((1 + z)*(1 - (x + 2)*z + z^2)), and
O.g.f. for column k: x^k/((1+x)*(1-x)^(2*(k+1))) (Riordan property). (End)
T(n, k) = binomial(k + n + 2, n - k + 1)*hypergeom([1, k + n + 3], [n - k + 2], -1) + (-1)^(n - k)/4^(k + 1). - Peter Luschny, Oct 31 2019
From Michael A. Allen, Mar 20 2021: (Start)
T(n,k) = A335964(2*n+1,n-k).
T(n,k) = T(n-2,k) + binomial(n+k,2*k). (End)

A115145 Sixth convolution of A115140.

Original entry on oeis.org

1, -6, 9, -2, 0, 0, -1, -6, -27, -110, -429, -1638, -6188, -23256, -87210, -326876, -1225785, -4601610, -17298645, -65132550, -245642760, -927983760, -3511574910, -13309856820, -50528160150, -192113383644, -731508653106, -2789279908316, -10649977831752, -40715807302800
Offset: 0

Author

Wolfdieter Lang, Jan 13 2006

Keywords

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2)*Sqrt(1-4*x))/2 )); // G. C. Greubel, Feb 12 2019
    
  • Mathematica
    CoefficientList[Series[(1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2)*Sqrt[1-4*x])/2, {x, 0, 30}], x] (* G. C. Greubel, Feb 12 2019 *)
  • PARI
    my(x='x+O('x^30)); Vec((1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2) *sqrt(1-4*x))/2) \\ G. C. Greubel, Feb 12 2019
    
  • Sage
    ((1-6*x+9*x^2-2*x^3 +(1-4*x+3*x^2)*sqrt(1-4*x))/2).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Feb 12 2019

Formula

O.g.f.: 1/c(x)^6 = P(7, x) - x*P(6, x)*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers) and the polynomials P(n, x) defined in A115139. Here P(7, x)=1-5*x+6*x^2-x^3 and P(6, x) = 1-4*x+3*x^2.
a(n) = -C6(n-6), n>=6, with C6(n) = A003517(n+2) (sixth convolution of Catalan numbers). a(0)=1, a(1)=-6, a(2)=9, a(3)=-2, a(4)=0=a(5). [1, -6, 9, -2] is row n=6 of signed A034807 (signed Lucas polynomials). See A115149 and A034807 for comments.
D-finite with recurrence +n*(n-6)*a(n) -2*(2*n-7)*(n-4)*a(n-1)=0. - R. J. Mathar, Sep 23 2021
Showing 1-10 of 13 results. Next