A156600 Triangle T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6, read by rows.
1, 1, 1, 1, -5, 1, 1, 24, 24, 1, 1, -115, 552, -115, 1, 1, 551, 12673, 12673, 551, 1, 1, -2640, 290928, -1394030, 290928, -2640, 1, 1, 12649, 6678672, 153331178, 153331178, 6678672, 12649, 1, 1, -60605, 153318529, -16865038190, 80805530806, -16865038190, 153318529, -60605, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -5, 1; 1, 24, 24, 1; 1, -115, 552, -115, 1; 1, 551, 12673, 12673, 551, 1; 1, -2640, 290928, -1394030, 290928, -2640, 1; 1, 12649, 6678672, 153331178, 153331178, 6678672, 12649, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Programs
-
Mathematica
(* First program *) b[n_, k_]:= If[k==n, 2, If[k==n-1 || k==n+1, -1, 0]]; M[d_]:= Table[b[n, k], {n,d}, {k,d}]; p[x_, n_]:= If[n==0, 1, CharacteristicPolynomial[M[n], x]]; f= Table[p[x, n], {n,0,20}]; t[n_, k_]:= If[k==0, n!, Product[f[[j]], {j, n}]/.x->(k+1)]; T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])]; Table[T[n, k, 6], {n,0,12}, {k,0,n}]//TableForm (* modified by G. C. Greubel, Jun 25 2021 *) (* Second program *) t[n_, k_]:= t[n, k]= If[n==0, 1, If[k==0, (n-1)!, Product[(-1)^j*Simplify[ChebyshevU[j, x/2 - 1]], {j,0,n-1}]/.x->(k+1)]]; T[n_, k_, m_]:= T[n, k, m]= t[n, m]/(t[k, m]*t[n-k, m]); Table[T[n, k, 6], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jun 25 2021 *)
-
Sage
@CachedFunction def t(n, k): if (n==0): return 1 elif (k==0): return factorial(n-1) else: return product( (-1)^j*chebyshev_U(j, (k-1)/2) for j in (0..n-1) ) def T(n,k,m): return t(n,m)/(t(k,m)*t(n-k,m)) flatten([[T(n, k, 6) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 25 2021
Formula
T(n, k, m) = t(n, m)/(t(k, m)*t(n-k, m)), where t(n, k) = Product_{j=1..n} p(j, k+1), p(n, x) = Sum_{j=0..n} (-1)^j*A053122(n, j)*x^j, and m = 6.
Extensions
Edited by G. C. Greubel, Jun 25 2021
Comments