A318408 Triangle read by rows: T(n,k) is the number of permutations of [n+1] with index in the lexicographic ordering of permutations being congruent to 1 or 5 modulo 6 that have exactly k descents; k > 0.
0, 0, 1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 142, 48, 1, 1, 109, 730, 730, 109, 1, 1, 234, 3087, 6796, 3087, 234, 1, 1, 487, 11637, 48355, 48355, 11637, 487, 1, 1, 996, 40804, 291484, 543030, 291484, 40804, 996, 1
Offset: 0
Examples
The triangle T(n,k) begins: n\k| 1 2 3 4 5 6 7 8 9 ---+--------------------------------------------------------- 0 | 0 1 | 0 2 | 1 3 | 1 1 4 | 1 6 1 5 | 1 19 19 1 6 | 1 48 142 48 1 7 | 1 109 730 730 109 1 8 | 1 234 3087 6796 3087 234 1 9 | 1 487 11637 48355 48355 11637 487 1 10 | 1 996 40804 291484 543030 291484 40804 996 1
Links
- L. Solus. Local h^*-polynomials of some weighted projective spaces, arXiv:1807.08223 [math.CO], 2018. To appear in the Proceedings of the 2018 Summer Workshop on Lattice Polytopes at Osaka University (2018).
Crossrefs
Cf. A008292.
Programs
-
Macaulay2
R = QQ[z]; factoradicBox = n -> ( L := toList(1..(n!-1)); B := {}; for j in L do if (j%6!=0 and j%6!=2 and j%6!=3 and j%6!=4) then B = append(B,j); W := B / (i->z^(i-sum(1..(n-1),j->floor(i/((n-j)!+(n-1-j)!))))); return sum(W); );
Comments