cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Liam Solus

Liam Solus's wiki page.

Liam Solus has authored 6 sequences.

A318408 Triangle read by rows: T(n,k) is the number of permutations of [n+1] with index in the lexicographic ordering of permutations being congruent to 1 or 5 modulo 6 that have exactly k descents; k > 0.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 6, 1, 1, 19, 19, 1, 1, 48, 142, 48, 1, 1, 109, 730, 730, 109, 1, 1, 234, 3087, 6796, 3087, 234, 1, 1, 487, 11637, 48355, 48355, 11637, 487, 1, 1, 996, 40804, 291484, 543030, 291484, 40804, 996, 1
Offset: 0

Author

Liam Solus, Aug 26 2018

Keywords

Comments

Note that we assume the permutations are lexicographically ordered in a zero-indexed list from smallest to largest.
Recall that a descent in a permutation p of [n+1] is an index i in [n] such that p(i) > p(i+1).
The n-th row of the triangle T(n,k) is the coefficient vector of the local h^*-polynomial (i.e., the box polynomial) of the factoradic n-simplex. Each row is known to be symmetric and unimodal. Moreover the local h^*-polynomial of the factoradic n-simplex has only real roots. See the paper by L. Solus below for definitions and proofs of these statements.
The n-th row of T(n,k) is the coefficient sequence of a restriction of the n-th Eulerian polynomial, which is given by the n-th row of A008292.

Examples

			The triangle T(n,k) begins:
  n\k|  1     2     3       4       5       6     7     8    9
  ---+---------------------------------------------------------
  0  |  0
  1  |  0
  2  |  1
  3  |  1     1
  4  |  1     6     1
  5  |  1    19    19       1
  6  |  1    48   142      48       1
  7  |  1   109   730     730     109       1
  8  |  1   234  3087    6796    3087     234     1
  9  |  1   487 11637   48355   48355   11637   487     1
  10 |  1   996 40804  291484  543030  291484 40804   996    1
		

Crossrefs

Cf. A008292.

Programs

  • Macaulay2
    R = QQ[z];
    factoradicBox = n -> (
    L := toList(1..(n!-1));
    B := {};
    for j in L do
    if (j%6!=0 and j%6!=2 and j%6!=3 and j%6!=4) then B = append(B,j);
    W := B / (i->z^(i-sum(1..(n-1),j->floor(i/((n-j)!+(n-1-j)!)))));
    return sum(W);
    );

A318407 Triangle read by rows: T(n,k) is the number of Markov equivalence classes whose skeleton is the caterpillar graph on n nodes that contain precisely k immoralities.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 5, 3, 1, 1, 7, 8, 3, 3, 1, 8, 13, 6, 4, 1, 10, 23, 16, 13, 6, 1, 1, 11, 31, 29, 19, 10, 1, 1, 13, 46, 59, 46, 39, 13, 5, 1, 14, 57, 90, 75, 58, 23, 6, 1, 16, 77, 153, 158, 147, 97, 39, 15, 1, 1, 17, 91, 210, 248, 222, 155, 62, 21, 1
Offset: 0

Author

Liam Solus, Aug 26 2018

Keywords

Comments

The n-th row of the triangle T(n,k) is the coefficient sequence of a generating polynomial admitting a recursive formula given in Theorem 4.3 of the paper by A. Radhakrishnan et al. below.
The sum of the entries in the n-th row is A318406(n).
The entries in the n-th row appear to alway form a unimodal sequence.

Examples

			The triangle T(n,k) begins:
  n\k|  0    1    2    3    4    5    6    7    8    9
-----+------------------------------------------------
   0 |  0
   1 |  1
   2 |  1
   3 |  1    1
   4 |  1    2
   5 |  1    4    1    1
   6 |  1    5    3    1
   7 |  1    7    8    3    3
   8 |  1    8   13    6    4
   9 |  1   10   23   16   13    6    1
  10 |  1   11   31   29   19   10    1
  11 |  1   13   46   59   46   39   13    5
  12 |  1   14   57   90   75   58   23    6
  13 |  1   16   77  153  158  147   97   39   15    1
  14 |  1   17   91  210  248  222  155   62   21    1
		

Crossrefs

Programs

  • Mathematica
    W[0] = 0; W[1] = 1; W[2] = 1; W[3] = 1 + x; W[4] = 1 + 2x;
    W[n_] := W[n] = If[EvenQ[n], W[n-1] + x W[n-2], (x+2) W[n-2] + (x^3 - x^2 + x - 2) W[n-3] + (x^2 + 1) W[n-4]];
    Join[{0}, Table[CoefficientList[W[n], x], {n, 0, 14}]] // Flatten (* Jean-François Alcover, Sep 17 2018 *)
  • PARI
    pol(n) = if (n==0, 0, if (n==1, 1, if (n==2, 1, if (n==3, 1 + x, if (n==4, 1 + 2*x, if (n%2, (x + 2)*pol(n-2) + (x^3 - x^2 + x-2)*pol(n-3) + (x^2 + 1)*pol(n-4), pol(n-1) + x*pol(n-2)))))));
    row(n) = Vecrev(pol(n)); \\ Michel Marcus, Sep 04 2018

Formula

A recursion whose n-th iteration is a polynomial with coefficient vector the n-th row of T(n,k):
W_0 = 0
W_1 = 1
W_2 = 1
W_3 = 1 + x
W_4 = 1 + 2*x
for n>4:
if n is even:
W_n = W_{n-1} + x*W_{n-2}
if n is odd:
W_n = (x + 2)*W_{n-2} + (x^3 - x^2 + x-2)*W_{n-3} + (x^2 + 1)*W_{n-4}
(see Theorem 4.3 of Radhakrishnan et al. for proof.)

A318406 For n > 4, a(n) = a(n-1) + a(n-2) if n is even and a(n) = 3*a(n-2) + a(n-4) - a(n-5) if n is odd; a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 2, and a(4) = 3.

Original entry on oeis.org

0, 1, 1, 2, 3, 7, 10, 22, 32, 70, 102, 222, 324, 704, 1028, 2232, 3260, 7076, 10336, 22432, 32768, 71112, 103880, 225432, 329312, 714640, 1043952, 2265472, 3309424, 7181744, 10491168, 22766752, 33257920, 72172576, 105430496, 228793312, 334223808, 725294592, 1059518400, 2299246592, 3358764992
Offset: 0

Author

Liam Solus, Aug 26 2018

Keywords

Comments

a(n) is the number of Markov equivalence classes whose skeleton is the caterpillar graph on n nodes. See Corollary 4.4 in the paper by A. Radhakrishnan et al. below.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{0, 4, 0, -2, 0, -2}, {0, 1, 1, 2, 3, 7}, 50] (* Jean-François Alcover, Sep 17 2018 *)
    nxt[{n_,a_,b_,c_,d_,e_}]:={n+1,b,c,d,e,If[OddQ[n],d+e,3d-a+b]}; NestList[nxt,{4,0,1,1,2,3},40][[All,2]] (* Harvey P. Dale, Dec 25 2022 *)
  • PARI
    a(n) = if (n > 4, if (n%2, 3*a(n-2) + a(n-4) - a(n-5), a(n-1) + a(n-2)), if (n > 1, n-1, n)); \\ Michel Marcus, Sep 03 2018
    
  • PARI
    concat(0, Vec(x*(1 - x)*(1 + x)*(1 + x - x^2) / (1 - 4*x^2 + 2*x^4 + 2*x^6) + O(x^40))) \\ Colin Barker, Sep 03 2018

Formula

From Colin Barker, Sep 03 2018: (Start)
G.f.: x*(1 - x)*(1 + x)*(1 + x - x^2) / (1 - 4*x^2 + 2*x^4 + 2*x^6).
a(n) = 4*a(n-2) - 2*a(n-4) - 2*a(n-6) for n>5.
(End)

A318405 Rectangular array R read by antidiagonals: R(n,k) = F(n+1)^k - k*F(n-1)*F(n)^(k-1), where F(n) = A000045(n), the n-th Fibonacci number; n >= 0, k >= 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 5, 3, 1, 1, 12, 15, 13, 5, 1, 1, 27, 49, 71, 34, 8, 1, 1, 58, 163, 409, 287, 89, 13, 1, 1, 121, 537, 2315, 2596, 1237, 233, 21, 1, 1, 248, 1739, 12709, 23393, 18321, 5205, 610, 34, 1, 1, 503, 5537, 67919, 205894, 268893, 124177, 22105, 1597, 55
Offset: 0

Author

Liam Solus, Aug 26 2018

Keywords

Comments

Row index n begins with 0, column index begins with 1.
R(n,k) is the number of Markov equivalence classes whose skeleton is a spider graph with k legs, each of which contains n nodes of degree at most two. See Corollary 4.2 in the paper by A. Radhakrishnan et al. below.

Examples

			The rectangular array R(n,k) begins:
n\k|   1      2      3        4         5          6            7
---+-------------------------------------------------------------
0  |   0      1      1        1         1          1            1
1  |   1      1      1        1         1          1            1
2  |   1      2      5       12        27         58          121
3  |   2      5     15       49       163        537         1739
4  |   3     13     71      409      2315      12709        67919
5  |   5     34    287     2596     23393     205894      1769027
6  |   8     89   1237    18321    268893    3843769     53573477
7  |  13    233   5205   124177   2941661   67944057   1530787237
		

Crossrefs

Columns include A000045, A001519, A318376, A318404.
Cf. A007984.

Programs

  • Sage
    def R(n, k):
        return fibonacci(n+1)^k-k*fibonacci(n-1)*fibonacci(n)^(k-1)

A318404 a(n) = F(n+1)^4 - 4*F(n-1)*F(n)^3, where F(n) = A000045(n), the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 12, 49, 409, 2596, 18321, 124177, 854764, 5849089, 40115241, 274888516, 1884285217, 12914634529, 88519396044, 606717892561, 4158514347961, 28502860300132, 195361565985969, 1339027949145649, 9177834477168556, 62905812346085281, 431162854681140297
Offset: 0

Author

Liam Solus, Aug 26 2018

Keywords

Comments

a(n) is the number of Markov equivalence classes whose skeleton is a spider graph with four legs, each of which contains n nodes of degree at most two.
A001519 admits the related formula A001519(n) = F(n+1)^2 - 2*F(n-1)*F(n).

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)^4-4*Fibonacci(n-1)*Fibonacci(n)^3: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    f:= gfun:-rectoproc({a(n+5)-5*a(n+4)-15*a(n+3)+15*a(n+2)+5*a(n+1)-a(n),a(0)=1,a(1)=1,a(2)=12,a(3)=49,a(4)=409},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Aug 26 2018
  • Mathematica
    Table[Fibonacci[n + 1]^4 - 4 Fibonacci[n - 1] Fibonacci[n]^3, {n, 0, 25}] (* Vincenzo Librandi, Aug 26 2018 *)
    CoefficientList[Series[(-1 + 4 x + 8 x^2 + 11 x^3 - 4 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5), {x, 0, 50}], x] (* Stefano Spezia, Sep 03 2018 *)
  • PARI
    a(n) = fibonacci(n+1)^4 - 4*fibonacci(n-1)*fibonacci(n)^3; \\ Michel Marcus, Aug 26 2018
  • SageMath
    def a(n):
        return fibonacci(n+1)^4-4*fibonacci(n-1)*fibonacci(n)^3
    [a(n) for n in range(20)]
    

Formula

G.f.: (-1 + 4*x + 8*x^2 + 11*x^3 - 4*x^4)/(-1 + 5*x + 15*x^2 - 15*x^3 - 5*x^4 + x^5). - Robert Israel, Aug 26 2018

Extensions

a(0) = 1 prepended by Vincenzo Librandi, Aug 26 2018

A318376 a(n) = F(n+1)^3 - 3*F(n-1)*F(n)^2, where F(n) = A000045(n), the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 5, 15, 71, 287, 1237, 5205, 22105, 93547, 396419, 1679019, 7112825, 30129785, 127632829, 540659703, 2290273903, 9701751655, 41097286445, 174090887853, 737460853361, 3123934276211, 13233197998795, 56056726205715, 237460102927921, 1005897137745457, 4261048654187957
Offset: 0

Author

Liam Solus, Aug 24 2018

Keywords

Comments

a(n) is the number of Markov equivalence classes whose skeleton is a spider graph with three legs, each of which contains n nodes of degree at most two.
A001519 admits the related formula A001519(n) = F(n+1)^2 - 2*F(n-1)*F(n).

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)^3 - 3*Fibonacci(n-1)*Fibonacci(n)^2: n in [1..30]]; // Vincenzo Librandi, Sep 03 2018
  • Mathematica
    CoefficientList[Series[(1 - 2 x - 4 x^2 - 3 x^3) / ((1 + x - x^2) (1-4 x-x^2)), {x, 0, 26}], x] (* Michael De Vlieger, Aug 25 2018 *)
    LinearRecurrence[{3, 6, -3, -1}, {1, 1, 5, 15, 71}, 26] (* Stefano Spezia, Sep 02 2018; a(0)=1 amended by Georg Fischer, Apr 03 2019 *)
    Table[Fibonacci[n + 1]^3 - 3 Fibonacci[n-1] Fibonacci[n]^2, {n, 0, 25}] (* Vincenzo Librandi, Sep 03 2018 *)
    #[[3]]^3-3#[[1]]#[[2]]^2&/@Partition[Fibonacci[Range[-1,30]],3,1] (* Harvey P. Dale, Sep 02 2023 *)
  • PARI
    a(n) = fibonacci(n+1)^3 - 3*fibonacci(n-1)*fibonacci(n)^2; \\ Michel Marcus, Aug 25 2018
    
  • PARI
    my(x='x+O('x^31));  Vec((1 - 2*x - 4*x^2 - 3*x^3) / ((1 + x - x^2)*(1 - 4*x - x^2))) \\ Colin Barker, Aug 25 2018 and Sep 06 2018
    

Formula

From Colin Barker, Aug 25 2018: (Start)
G.f.: (1 - 2 x - 4 x^2 - 3 x^3) / ((1 + x - x^2)*(1 - 4*x - x^2)).
a(n) = 3*a(n-1) + 6*a(n-2) - 3*a(n-3) - a(n-4) for n>3.
(End)

Extensions

a(0) = 1 inserted by Vincenzo Librandi, Sep 03 2018