cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318404 a(n) = F(n+1)^4 - 4*F(n-1)*F(n)^3, where F(n) = A000045(n), the n-th Fibonacci number.

Original entry on oeis.org

1, 1, 12, 49, 409, 2596, 18321, 124177, 854764, 5849089, 40115241, 274888516, 1884285217, 12914634529, 88519396044, 606717892561, 4158514347961, 28502860300132, 195361565985969, 1339027949145649, 9177834477168556, 62905812346085281, 431162854681140297
Offset: 0

Views

Author

Liam Solus, Aug 26 2018

Keywords

Comments

a(n) is the number of Markov equivalence classes whose skeleton is a spider graph with four legs, each of which contains n nodes of degree at most two.
A001519 admits the related formula A001519(n) = F(n+1)^2 - 2*F(n-1)*F(n).

Crossrefs

Programs

  • Magma
    [Fibonacci(n+1)^4-4*Fibonacci(n-1)*Fibonacci(n)^3: n in [0..25]]; // Vincenzo Librandi, Aug 26 2018
    
  • Maple
    f:= gfun:-rectoproc({a(n+5)-5*a(n+4)-15*a(n+3)+15*a(n+2)+5*a(n+1)-a(n),a(0)=1,a(1)=1,a(2)=12,a(3)=49,a(4)=409},a(n),remember):
    map(f, [$0..30]); # Robert Israel, Aug 26 2018
  • Mathematica
    Table[Fibonacci[n + 1]^4 - 4 Fibonacci[n - 1] Fibonacci[n]^3, {n, 0, 25}] (* Vincenzo Librandi, Aug 26 2018 *)
    CoefficientList[Series[(-1 + 4 x + 8 x^2 + 11 x^3 - 4 x^4)/(-1 + 5 x + 15 x^2 - 15 x^3 - 5 x^4 + x^5), {x, 0, 50}], x] (* Stefano Spezia, Sep 03 2018 *)
  • PARI
    a(n) = fibonacci(n+1)^4 - 4*fibonacci(n-1)*fibonacci(n)^3; \\ Michel Marcus, Aug 26 2018
  • SageMath
    def a(n):
        return fibonacci(n+1)^4-4*fibonacci(n-1)*fibonacci(n)^3
    [a(n) for n in range(20)]
    

Formula

G.f.: (-1 + 4*x + 8*x^2 + 11*x^3 - 4*x^4)/(-1 + 5*x + 15*x^2 - 15*x^3 - 5*x^4 + x^5). - Robert Israel, Aug 26 2018

Extensions

a(0) = 1 prepended by Vincenzo Librandi, Aug 26 2018

A318405 Rectangular array R read by antidiagonals: R(n,k) = F(n+1)^k - k*F(n-1)*F(n)^(k-1), where F(n) = A000045(n), the n-th Fibonacci number; n >= 0, k >= 1.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 5, 5, 3, 1, 1, 12, 15, 13, 5, 1, 1, 27, 49, 71, 34, 8, 1, 1, 58, 163, 409, 287, 89, 13, 1, 1, 121, 537, 2315, 2596, 1237, 233, 21, 1, 1, 248, 1739, 12709, 23393, 18321, 5205, 610, 34, 1, 1, 503, 5537, 67919, 205894, 268893, 124177, 22105, 1597, 55
Offset: 0

Views

Author

Liam Solus, Aug 26 2018

Keywords

Comments

Row index n begins with 0, column index begins with 1.
R(n,k) is the number of Markov equivalence classes whose skeleton is a spider graph with k legs, each of which contains n nodes of degree at most two. See Corollary 4.2 in the paper by A. Radhakrishnan et al. below.

Examples

			The rectangular array R(n,k) begins:
n\k|   1      2      3        4         5          6            7
---+-------------------------------------------------------------
0  |   0      1      1        1         1          1            1
1  |   1      1      1        1         1          1            1
2  |   1      2      5       12        27         58          121
3  |   2      5     15       49       163        537         1739
4  |   3     13     71      409      2315      12709        67919
5  |   5     34    287     2596     23393     205894      1769027
6  |   8     89   1237    18321    268893    3843769     53573477
7  |  13    233   5205   124177   2941661   67944057   1530787237
		

Crossrefs

Columns include A000045, A001519, A318376, A318404.
Cf. A007984.

Programs

  • Sage
    def R(n, k):
        return fibonacci(n+1)^k-k*fibonacci(n-1)*fibonacci(n)^(k-1)
Showing 1-2 of 2 results.