cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 42 results. Next

A208513 Triangle of coefficients of polynomials u(n,x) jointly generated with A111125; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 9, 6, 1, 1, 16, 20, 8, 1, 1, 25, 50, 35, 10, 1, 1, 36, 105, 112, 54, 12, 1, 1, 49, 196, 294, 210, 77, 14, 1, 1, 64, 336, 672, 660, 352, 104, 16, 1, 1, 81, 540, 1386, 1782, 1287, 546, 135, 18, 1, 1, 100, 825, 2640, 4290, 4004, 2275, 800, 170, 20, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

The columns of A208513 are identical to those of A208509. Here, however, the alternating row sums are periodic (with period 1,0,-2,-3,-2,0).
From Tom Copeland, Nov 07 2015: (Start)
These polynomials may be expressed in terms of the Faber polynomials of A263916, similar to A127677.
Rephrasing notes in A111125: Append an initial column of zeros except for a 1 at the top to A111125. Then the rows of this entry contain the partial sums of the column sequences of modified A111125; therefore, the difference of consecutive pairs of rows of this entry, modified by appending an initial row of zeros to it, generates the modified A111125. (End)

Examples

			First five rows:
  1;
  1,  1;
  1,  4,  1;
  1,  9,  6, 1;
  1, 16, 20, 8, 1;
First five polynomials u(n,x):
  u(1,x) = 1;
  u(2,x) = 1 +    x;
  u(3,x) = 1 +  4*x +    x^2;
  u(4,x) = 1 +  9*x +  6*x^2 +   x^3;
  u(5,x) = 1 + 16*x + 20*x^2 + 8*x^3 + x^4;
		

Crossrefs

Programs

  • Magma
    A208513:= func< n,k | k eq 1 select 1 else (2*(n-1)/(n+k-2))*Binomial(n+k-2, 2*k-2) >;
    [A208513(n,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 02 2022
    
  • Mathematica
    (* First program *)
    u[1, x_]:=1; v[1, x_]:=1; z=16;
    u[n_, x_]:= u[n-1, x] + x*v[n-1, x];
    v[n_, x_]:= u[n-1, x] + (x+1)*v[n-1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n,z}];
    TableForm[cu]
    Flatten[%]  (* A208513 *)
    Table[Expand[v[n, x]], {n,z}]
    cv = Table[CoefficientList[v[n, x], x], {n,z}];
    TableForm[cv]
    Flatten[%]  (* A111125 *)
    (* Second program *)
    T[n_, k_]:= If[k==1, 1, ((n-1)/(k-1))*Binomial[n+k-3, 2*k-3]];
    Table[T[n, k], {n,15}, {k,n}]//Flatten (* G. C. Greubel, Feb 02 2022 *)
  • Sage
    def A208513(n,k): return 1 if (k==1) else ((n-1)/(k-1))*binomial(n+k-3, 2*k-3)
    flatten([[A208513(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 02 2022

Formula

Coefficients of u(n, x) from the mixed recurrence relations:
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x) + 1,
where u(1,x) = 1, u(2,x) = 1+x, v(1,x) = 1, v(2,x) = 3+x.
From Peter Bala, May 01 2012: (Start)
Working with an offset of 0: T(n,0) = 1; T(n,k) = (n/k)*binomial(n+k-1,2*k-1) = (n/k)*A078812(n,k) for k > 0. Cf. A156308.
O.g.f.: ((1-t)^2 + t^2*x)/((1-t)*((1-t)^2-t*x)) = 1 + (1+x)*t + (1+4*x+x^2)*t^2 + ....
u(n+1,x) = -1 + (b(2*n,x) + 1)/b(n,x), where b(n,x) = Sum_{k = 0..n} binomial(n+k, 2*k)*x^k are the Morgan-Voyce polynomials of A085478.
This triangle is formed from the even numbered rows of A211956 with a factor of 2^(k-1) removed from the k-th column entries.
(End)
T(n, k) = (2*(n-1)/(n+k-2))*binomial(n+k-2, 2*k-2). - G. C. Greubel, Feb 02 2022

A113187 Inverse of twin-prime related triangle A111125.

Original entry on oeis.org

1, -3, 1, 10, -5, 1, -35, 21, -7, 1, 126, -84, 36, -9, 1, -462, 330, -165, 55, -11, 1, 1716, -1287, 715, -286, 78, -13, 1, -6435, 5005, -3003, 1365, -455, 105, -15, 1, 24310, -19448, 12376, -6188, 2380, -680, 136, -17, 1, -92378, 75582, -50388, 27132, -11628, 3876, -969, 171, -19, 1, 352716, -293930, 203490
Offset: 0

Views

Author

Paul Barry, Oct 17 2005

Keywords

Comments

Row sums are (-1)^n*A000984. Diagonal sums are (-1)^n*A014301(n+1). An interesting factorization is (1/sqrt(1+4x)),(sqrt(1+4x)-1)/2)(1/(1+x),x/(1+x)).
The Z-sequence for this Riordan array is [-3,1], and the A-sequence is [1,-2,1]. For the Z- and A-sequence of Riordan arrays see the W. Lang link, with references, under A006232. - Wolfdieter Lang, Oct 18 2012
This triangle appears in the formula (x-1/x)^(2*n+1) = sum(T(n,k)*(x^(2*k+1) - 1/x^(2*k+1)),k=0..n), n >= 0. Proof from the inversion of the formula given in an Oct 18 2012 comment on A111125, due to the Riordan property. - Wolfdieter Lang, Nov 14 2012

Examples

			Triangle T(n,k) begins:
n\k     0      1      2     3      4    5    6   7   8  9 ...
0:      1
1:     -3      1
2:     10     -5      1
3:    -35     21     -7     1
4:    126    -84     36    -9      1
5:   -462    330   -165    55    -11    1
6:   1716  -1287    715  -286     78  -13    1
7:  -6435   5005  -3003  1365   -455  105  -15   1
8:  24310 -19448  12376 -6188   2380 -680  136 -17   1
9: -92378  75582 -50388 27132 -11628 3876 -969 171 -19  1
... Reformatted by Wolfdieter Lang, Oct 17 2012
From Wolfdieter Lang, Oct 18 2012: (Start)
Recurrence from the Z-sequence [-3,1] (see a comment above):  T(3,0) = -3*T(2,0) + 1*T(2,1) = -3*10 + (-5) = -35.
Recurrence from the A-sequence [1,-2,1]: T(5,1) = 1*T(4,0) -2*T(4,1) + 1*T(4,2) = 126 -2*(-84) +36 = 330. (End)
		

Formula

Riordan array ((sqrt(1+4x)-1)/(2x*sqrt(1+4x)), (1+2x-sqrt(1+4x))/(2x)).
T(n, k)=(-1)^(n-k)*C(2n+1, n+k+1); T(n, k)=sum{j=0..n, (-1)^(n-k)*C(2n-j, n-j)C(j, k)}.
O.g.f. column k: ((2-c(-x))/(1+4*x))*(1-c(-x))^k, with the o.g.f. c(x) of A000108 (Catalan), k>=0. From the Riordan property given above. - Wolfdieter Lang, Oct 17 2012
O.g.f. of the row polynomials R(n,x) = sum(T(n,k)*x^k,k=0..n): ((2-c(-z))/(1+4*z))/(1-x*(1-c(-z))) = 1/((1+4*z)*(x-(1-x)^2*z))*(x+2*x*z-2*z + (1+x)*z*c(-z)), with the o.g.f. c(x) of A000108. - Wolfdieter Lang, Oct 18 2012

A217477 Z-sequence for the Riordan triangle A111125.

Original entry on oeis.org

3, -4, 12, -40, 140, -504, 1848, -6864, 25740, -97240, 369512, -1410864, 5408312, -20801200, 80233200, -310235040, 1202160780, -4667212440, 18150270600, -70690527600, 275693057640, -1076515748880, 4208197927440, -16466861455200
Offset: 0

Views

Author

Wolfdieter Lang, Oct 18 2012

Keywords

Comments

For the notion Z-sequence for a Riordan triangle (lower triangular matrix) R(n,m) see a W.Lang link under A006232, with references. The Z-sequence appears in the recurrence for any entry R(n,0), n >= 1: R(n,0) = sum(Z(m)*R(n-1,m), m=0..n-1).
The A-sequence for the Riordan triangle A111125 is (-1)^n*A115141(n).

Crossrefs

Formula

O.g.f.: (1 - (2 - c(-x))/(1 + 4*x))/(1 - c(-x)) = ((3 + 4*x) + 4*x*c(-x))/(1 + 4*x), with c(x) the o.g.f. of A000108 (Catalan).
a(0) = 3, a(n) = ((-1)^n)*4*binomial(2*n-1,n), n >= 1, (from adding the two pieces of the second o.g.f. version).
|a(n)| = A100320(n), n >0. - R. J. Mathar, Apr 22 2013
G.f.: 1 + G(0), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) - (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013

A208510 Triangle of coefficients of polynomials u(n,x) jointly generated with A029653; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 7, 9, 5, 1, 1, 9, 16, 14, 6, 1, 1, 11, 25, 30, 20, 7, 1, 1, 13, 36, 55, 50, 27, 8, 1, 1, 15, 49, 91, 105, 77, 35, 9, 1, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

Row sums: A083329
Alternating row sums: 1,0,-1,-1,-1,-1,-1,-1,-1,-1,...
Antidiagonal sums: A000071 (-1+Fibonacci numbers)
col 1: A000012
col 2: A005408
col 3: A000290
col 4: A000330
col 5: A002415
col 6: A005585
col 7: A040977
col 8: A050486
col 9: A053347
col 10: A054333
col 11: A054334
col 12: A057788
col 2n-1 of A208510 is column n of A208508
col 2n of A208510 is column n of A208509.
...
GENERAL DISCUSSION:
A208510 typifies arrays generated by paired recurrence equations of the following form:
u(n,x)=a(n,x)*u(n-1,x)+b(n,x)*v(n-1,x)+c(n,x)
v(n,x)=d(n,x)*u(n-1,x)+e(n,x)*v(n-1,x)+f(n,x).
...
These first-order recurrences imply separate second-order recurrences. In order to show them, the six functions a(n,x),...,f(n,x) are abbreviated as a,b,c,d,e,f.
Then, starting with initial values u(1,x)=1 and u(2,x)=a+b+c: u(n,x) = (a+e)u(n-1,x) + (bd-ae)u(n-2,x) + bf-ce+c.
With initial values v(1,x)=1 and v(2,x)=d+e+f: v(n,x) = (a+e)v(n-1,x) + (bd-ae)v(n-2,x) + cd-af+f.
...
In the guide below, the last column codes certain sequences that occur in one of these ways: row, column, edge, row sum, alternating row sum. Coding:
A: 1,-1,1,-1,1,-1,1.... A033999
B: 1,2,4,8,16,32,64,... powers of 2
C: 1,1,1,1,1,1,1,1,.... A000012
D: 2,2,2,2,2,2,2,2,.... A007395
E: 2,4,6,8,10,12,14,... even numbers
F: 1,1,2,3,5,8,13,21,.. Fibonacci numbers
N: 1,2,3,4,5,6,7,8,.... A000027
O: 1,3,5,7,9,11,13,.... odd numbers
P: 1,3,9,27,81,243,.... powers of 3
S: 1,4,9,16,25,36,49,.. squares
T: 1,3,6,10,15,21,38,.. triangular numbers
Z: 1,0,0,0,0,0,0,0,0,.. A000007
*: (eventually) periodic alternating row sums
^: has a limiting row; i.e., the polynomials "approach" a power series
This coding includes indirect and repeated occurrences; e.g. F occurs thrice at A094441: in column 1 directly as Fibonacci numbers, in row sums as odd-indexed Fibonacci numbers, and in alternating row sums as signed Fibonacci numbers.
......... a....b....c....d....e....f....code
A034839 u 1....1....0....1....x....0....CCOT
A034867 v 1....1....0....1....x....0....CEN
A210221 u 1....1....0....1....2x...0....BBFF
A210596 v 1....1....0....1....2x...0....BBFF
A105070 v 1....2x...0....1....1....0....BN
A207605 u 1....1....0....1....x+1..0....BCFFN
A106195 v 1....1....0....1....x+1..0....BCFFN
A207606 u 1....1....0....x....x+1..0....DNT
A207607 v 1....1....0....x....x+1..0....DNT
A207608 u 1....1....0....2x...x+1..0....N
A207609 v 1....1....0....2x...x+1..0....C
A207610 u 1....1....0....1....x....1....CF
A207611 v 1....1....0....1....x....1....BCF
A207612 u 1....1....0....1....2x...1....BF
A207613 v 1....1....0....1....2x...1....BF
A207614 u 1....1....0....1....x+1..1....CN
A207615 v 1....1....0....1....x+1..1....CFN
A207616 u 1....1....0....x....1....1....CE
A207617 v 1....1....0....x....1....1....CNO
A029638 u 1....1....0....x....x....1....CDNO
A029635 v 1....1....0....x....x....1....CDNOZ
A207618 u 1....1....0....x....2x...1....N
A207619 v 1....1....0....x....2x...1....CFN
A207620 u 1....1....0....x....x+1..1....DET
A207621 v 1....1....0....x....x+1..1....DNO
A207622 u 1....1....0....2x...1....1....BT
A207623 v 1....1....0....2x...1....1....BN
A207624 u 1....1....0....2x...x....1....N
A102662 v 1....1....0....2x...x....1....CO
A207625 u 1....1....0....2x...x+1..1....T
A207626 v 1....1....0....2x...x+1..1....N
A207627 u 1....1....0....2x...2x...1....BN
A207628 v 1....1....0....2x...2x...1....BCE
A207629 u 1....1....0....x+1..1....1....CET
A207630 v 1....1....0....x+1..1....1....CO
A207631 u 1....1....0....x+1..x....1....DF
A207632 v 1....1....0....x+1..x....1....DEF
A207633 u 1....1....0....x+1..2x...1....F
A207634 v 1....1....0....x+1..2x...1....F
A207635 u 1....1....0....x+1..x+1..1....DN
A207636 v 1....1....0....x+1..x+1..1....CD
A160232 u 1....x....0....1....2x...0....BCFN
A208341 v 1....x....0....1....2x...0....BCFFN
A085478 u 1....x....0....1....x+1..0....CCOFT*
A078812 v 1....x....0....1....x+1..0....CEFN*
A208342 u 1....x....0....x....x....0....CCFNO
A208343 v 1....x....0....x....x....0....BBCDFZ
A208344 u 1....x....0....x....2x...0....CCFN
A208345 v 1....x....0....x....2x...0....CFZ
A094436 u 1....x....0....x....x+1..0....CFFN
A094437 v 1....x....0....x....x+1..0....CEFF
A117919 u 1....x....0....2x...1....0....BCNT
A135837 v 1....x....0....2x...1....0....BCET
A208328 u 1....x....0....2x...x....0....CCOP
A208329 v 1....x....0....2x...x....0....DPZ
A208330 u 1....x....0....2x...x+1..0....CNPT
A208331 v 1....x....0....2x...x+1..0....CN
A208332 u 1....x....0....2x...2x...0....CCE
A208333 v 1....x....0....2x...2x...0....DZ
A208334 u 1....x....0....x+1..1....0....CCNT
A208335 v 1....x....0....x+1..1....0....CCN*
A208336 u 1....x....0....x+1..x....0....CFNT*
A208337 v 1....x....0....x+1..x....0....ACFN*
A208338 u 1....x....0....x+1..2x...0....CNP
A208339 v 1....x....0....x+1..2x...0....BCNP
A202390 u 1....x....0....x+1..x+1..0....CFPTZ*
A208340 v 1....x....0....x+1..x+1..0....FNPZ*
A208508 u 1....x....0....1....1....1....CCES
A208509 v 1....x....0....1....1....1....BCO
A208510 u 1....x....0....1....x....1....CCCNOS*
A029653 v 1....x....0....1....x....1....BCDOSZ*
A208511 u 1....x....0....1....2x...1....BCFO
A208512 v 1....x....0....1....2x...1....BDFO
A208513 u 1....x....0....1....x+1..1....CCES*
A111125 v 1....x....0....1....x+1..1....COO*
A133567 u 1....x....0....x....1....1....CCOTT
A133084 v 1....x....0....x....1....1....BBCEN
A208514 u 1....x....0....x....x....1....CEFN
A208515 v 1....x....0....x....x....1....BCDFN
A208516 u 1....x....0....x....2x...1....CNN
A208517 v 1....x....0....x....2x...1....CCN
A208518 u 1....x....0....x....x+1..1....CFNT
A208519 v 1....x....0....x....x+1..1....NFFT
A208520 u 1....x....0....2x...1....1....BCTT
A208521 v 1....x....0....2x...1....1....BEN
A208522 u 1....x....0....2x...x....1....CCN
A208523 v 1....x....0....2x...x....1....CCO
A208524 u 1....x....0....2x...x+1..1....CT*
A208525 v 1....x....0....2x...x+1..1....ACNP*
A208526 u 1....x....0....2x...2x...1....CEN
A208527 v 1....x....0....2x...2x...1....CCE
A208606 u 1....x....0....x+1..1....1....CCS
A208607 v 1....x....0....x+1..1....1....CNO
A208608 u 1....x....0....x+1..x....1....CFOT
A208609 v 1....x....0....x+1..x....1....DEN*
A208610 u 1....x....0....x+1..2x...1....CO
A208611 v 1....x....0....x+1..2x...1....DE
A208612 u 1....x....0....x+1..x+1..1....CFNS
A208613 v 1....x....0....x+1..x+1..1....CFN*
A105070 u 1....2x...0....1....1....0....BN
A207536 u 1....2x...0....1....1....0....BCT
A208751 u 1....2x...0....1....x+1..0....CDPT
A208752 v 1....2x...0....1....x+1..0....CNP
A135837 u 1....2x...0....x....1....0....BCNT
A117919 v 1....2x...0....x....1....0....BCNT
A208755 u 1....2x...0....x....x....0....BCDEP
A208756 v 1....2x...0....x....x....0....BCCOZ
A208757 u 1....2x...0....x....2x...0....CDEP
A208758 v 1....2x...0....x....2x...0....CCEPZ
A208763 u 1....2x...0....2x...x....0....CDOP
A208764 v 1....2x...0....2x...x....0....CCCP
A208765 u 1....2x...0....2x...x+1..0....CE
A208766 v 1....2x...0....2x...x+1..0....CC
A208747 u 1....2x...0....2x...2x...0....CDE
A208748 v 1....2x...0....2x...2x...0....CCZ
A208749 u 1....2x...0....x+1..1....0....BCOPT
A208750 v 1....2x...0....x+1..1....0....BCNP*
A208759 u 1....2x...0....x+1..2x....0...CE
A208760 v 1....2x...0....x+1..2x....0...BCO
A208761 u 1....2x...0....x+1..x+1...0...BCCT*
A208762 v 1....2x...0....x+1..x+1...0...BNZ*
A208753 u 1....2x...0....1....1.....1...BCS
A208754 v 1....2x...0....1....1.....1...BO
A105045 u 1....2x...0....1....2x....1...BCCOS*
A208659 v 1....2x...0....1....2x....1...BDOSZ*
A208660 u 1....2x...0....1....x+1...1...CDS
A208904 v 1....2x...0....1....x+1...1...CNO
A208905 u 1....2x...0....x....1.....1...BCT
A208906 v 1....2x...0....x....1.....1...BNN
A208907 u 1....2x...0....x....x.....1...BCN
A208756 v 1....2x...0....x....x.....1...BCCE
A208755 u 1....2x...0....x....2x....1...CEN
A208910 v 1....2x...0....x....2x....1...CCE
A208911 u 1....2x...0....x....x+1...1...BCT
A208912 v 1....2x...0....x....x+1...1...BNT
A208913 u 1....2x...0....2x...1.....1...BCT
A208914 v 1....2x...0....2x...1.....1...BEN
A208915 u 1....2x...0....2x...x.....1...CE
A208916 v 1....2x...0....2x...x.....1...CCO
A208919 u 1....2x...0....2x...x+1...1...CT
A208920 v 1....2x...0....2x...x+1...1...N
A208917 u 1....2x...0....2x...2x....1...CEN
A208918 v 1....2x...0....2x...2x....1...CCNP
A208921 u 1....2x...0....x+1..1.....1...BC
A208922 v 1....2x...0....x+1..1.....1...BON
A208923 u 1....2x...0....x+1..x.....1...BCNO
A208908 v 1....2x...0....x+1..x.....1...BDN*
A208909 u 1....2x...0....x+1..2x....1...BN
A208930 v 1....2x...0....x+1..2x....1...DN
A208931 u 1....2x...0....x+1..x+1...1...BCOS
A208932 v 1....2x...0....x+1..x+1...1...BCO*
A207537 u 1....x+1..0....1....1.....0...BCO
A207538 v 1....x+1..0....1....1.....0...BCE
A122075 u 1....x+1..0....1....x.....0...CCFN*
A037027 v 1....x+1..0....1....x.....0...CCFN*
A209125 u 1....x+1..0....1....2x....0...BCFN*
A164975 v 1....x+1..0....1....2x....0...BF
A209126 u 1....x+1..0....x....x.....0...CDFO*
A209127 v 1....x+1..0....x....x.....0...DFOZ*
A209128 u 1....x+1..0....x....2x....0...CDE*
A209129 v 1....x+1..0....x....2x....0...DEZ
A102756 u 1....x+1..0....x....x+1...0...CFNP*
A209130 v 1....x+1..0....x....x+1...0...CCFNP*
A209131 u 1....x+1..0....2x...x.....0...CDEP*
A209132 v 1....x+1..0....2x...x.....0...CNPZ*
A209133 u 1....x+1..0....2x...2x....0...CDN
A209134 v 1....x+1..0....2x...2x....0...CCN*
A209135 u 1....x+1..0....2x...x+1...0...CN*
A209136 v 1....x+1..0....2x...x+1...0...CCS*
A209137 u 1....x+1..0....x+1..x.....0...CFFP*
A209138 v 1....x+1..0....x+1..x.....0...AFFP*
A209139 u 1....x+1..0....x+1..2x....0...CF*
A209140 v 1....x+1..0....x+1..2x....0...BF
A209141 u 1....x+1..0....x+1..x+1...0...BCF*
A209142 v 1....x+1..0....x+1..x+1...0...BFZ*
A209143 u 1....x+1..0....1....1.....1...CCE*
A209144 v 1....x+1..0....1....1.....1...COO*
A209145 u 1....x+1..0....1....x.....1...CCFN*
A122075 v 1....x+1..0....1....x.....1...CCFN*
A209146 u 1....x+1..0....1....2x....1...BCF*
A209147 v 1....x+1..0....1....2x....1...BF
A209148 u 1....x+1..0....1....x+1...1...CCO*
A209149 v 1....x+1..0....1....x+1...1...CDO*
A209150 u 1....x+1..0....x....1.....1...CCNT*
A208335 v 1....x+1..0....x....1.....1...CDNN*
A209151 u 1....x+1..0....x....x.....1...CFN*
A208337 v 1....x+1..0....x....x.....1...ACFN*
A209152 u 1....x+1..0....x....2x....1...CN*
A208339 v 1....x+1..0....x....x.....1...BCN
A209153 u 1....x+1..0....x....x+1...1...CFT*
A208340 v 1....x+1..0....x....x.....1...FNZ*
A209154 u 1....x+1..0....2x...1.....1...BCT*
A209157 v 1....x+1..0....2x...1.....1...BNN
A209158 u 1....x+1..0....2x...x.....1...CN*
A209159 v 1....x+1..0....2x...x.....1...CO*
A209160 u 1....x+1..0....2x...2x....1...CN*
A209161 v 1....x+1..0....2x...2x....1...CE
A209162 u 1....x+1..0....2x...x+1...1...CT*
A209163 v 1....x+1..0....2x...x+1...1...CO*
A209164 u 1....x+1..0....x+1..1.....1...CC*
A209165 v 1....x+1..0....x+1..1.....1...CCN
A209166 u 1....x+1..0....x+1..x.....1...CFF*
A209167 v 1....x+1..0....x+1..x.....1...FF*
A209168 u 1....x+1..0....x+1..2x....1...CF*
A209169 v 1....x+1..0....x+1..2x....1...CF
A209170 u 1....x+1..0....x+1..x+1...1...CF*
A209171 v 1....x+1..0....x+1..x+1...1...CF*
A053538 u x....1....0....1....1.....0...BBCCFN
A076791 v x....1....0....1....1.....0...BBCDF
A209172 u x....1....0....1....2x....0...BCCFF
A209413 v x....1....0....1....2x....0...BCCFF
A094441 u x....1....0....1....x+1...0...CFFFN
A094442 v x....1....0....1....x+1...0...CEFFF
A054142 u x....1....0....x....x+1...0...CCFOT*
A172431 v x....1....0....x....x+1...0...CEFN*
A008288 u x....1....0....2x...1.....0...CCOO*
A035607 v x....1....0....2x...1.....0...ACDE*
A209414 u x....1....0....2x...x+1...0...CCS
A112351 v x....1....0....2x...x+1...0...CON
A209415 u x....1....0....x+1..x.....0...CCTN
A209416 v x....1....0....x+1..x.....0...ACN*
A209417 u x....1....0....x+1..2x....0...CC
A209418 v x....1....0....x+1..2x....0...BBC
A209419 u x....1....0....x+1..x+1...0...CFTZ*
A209420 v x....1....0....x+1..x+1...0...FNZ*
A209421 u x....1....0....1....1.....1...CCN
A209422 v x....1....0....1....1.....1...CD
A209555 u x....1....0....1....x.....1...CNN
A209556 v x....1....0....1....x.....1...CNN
A209557 u x....1....0....1....2x....1...BCN
A209558 v x....1....0....1....2x....1...BN
A209559 u x....1....0....1....x+1...1...CN
A209560 v x....1....0....1....x+1...1...CN
A209561 u x....1....0....x....1.....1...CCNNT*
A209562 v x....1....0....x....1.....1...CDNNT*
A209563 u x....1....0....x....x.....1...CCFT^
A209564 v x....1....0....x....x.....1...CFN^
A209565 u x....1....0....x....2x....1...CC^
A209566 v x....1....0....x....2x....1...BC^
A209567 u x....1....0....x....x+1...1...CNT*
A209568 v x....1....0....x....x+1...1...NNS*
A209569 u x....1....0....2x...1.....1...CNO*
A209570 v x....1....0....2x...1.....1...DNN*
A209571 u x....1....0....2x...x.....1...CCS^
A209572 v x....1....0....2x...x.....1...CN^
A209573 u x....1....0....2x...x+1...1...CNS
A209574 v x....1....0....2x...x+1...1...NO
A209575 u x....1....0....2x...2x....1...CC
A209576 v x....1....0....2x...2x....1...C
A209577 u x....1....0....x+1..1.....1...CNNT
A209578 v x....1....0....x+1..1.....1...CNN
A209579 u x....1....0....x+1..x.....1...CNNT
A209580 v x....1....0....x+1..x.....1...NN*
A209581 u x....1....0....x+1..2x....1...CN
A209582 v x....1....0....x+1..2x....1...BN
A209583 u x....1....0....x+1..x+1...1...CT*
A209584 v x....1....0....x+1..x+1...1...CN*
A121462 u x....x....0....x....x+1...0...BCFFNZ
A208341 v x....x....0....x....x+1...0...BCFFN
A209687 u x....x....0....2x...x+1...0...BCNZ
A208339 v x....x....0....2x...x+1...0...BCN
A115241 u x....x....0....1....1.....1...CDNZ*
A209688 v x....x....0....1....1.....1...DDN*
A209689 u x....x....0....1....x.....1...FNZ^
A209690 v x....x....0....1....x.....1...FN^
A209691 u x....x....0....1....2x....1...BCZ^
A209692 v x....x....0....1....2x....1...BCC^
A209693 u x....x....0....1....x+1...1...NNZ*
A209694 v x....x....0....1....x+1...1...CN*
A209697 u x....x....0....x....x+1...1...BNZ
A209698 v x....x....0....x....x+1...1...BNT
A209699 u x....x....0....2x...1.....1...BNNZ
A209700 v x....x....0....2x...1.....1...BDN
A209701 u x....x....0....2x...x+1...1...NZ
A209702 v x....x....0....2x...x+1...1...N
A209703 u x....x....0....x+1..1.....1...FNTZ
A209704 v x....x....0....x+1..1.....1...FNNT
A209705 u x....x....0....x+1..x+1...1...BNZ*
A209706 v x....x....0....x+1..x+1...1...BCN*
A209695 u x....x+1..0....2x...x+1...0...ACN*
A209696 v x....x+1..0....2x...x+1...0...CDN*
A209830 u x....x+1..0....x+1..2x....0...ACF
A209831 v x....x+1..0....x+1..2x....0...BCF*
A209745 u x....x+1..0....x+1..x+1...0...ABF*
A209746 v x....x+1..0....x+1..x+1...0...BFZ*
A209747 u x....x+1..0....1....1.....1...ADE*
A209748 v x....x+1..0....1....1.....1...DEO
A209749 u x....x+1..0....1....x.....1...ANN*
A209750 v x....x+1..0....1....x.....1...CNO
A209751 u x....x+1..0....1....2x....1...ABN*
A209752 v x....x+1..0....1....2x....1...BN
A209753 u x....x+1..0....1....x+1...1...AN*
A209754 v x....x+1..0....1....x+1...1...NT*
A209755 u x....x+1..0....x....1.....1...AFN
A209756 v x....x+1..0....x....1.....1...FNO*
A209759 u x....x+1..0....x....2x....1...ACF^
A209760 v x....x+1..0....x....2x....1...CF^*
A209761 u x....x+1..0....x.....x+1..1...ABNS*
A209762 v x....x+1..0....x.....x+1..1...BNS*
A209763 u x....x+1..0....2x....1....1...ABN*
A209764 v x....x+1..0....2x....1....1...BNN
A209765 u x....x+1..0....2x....x....1...ACF^*
A209766 v x....x+1..0....2x....x....1...CF^
A209767 u x....x+1..0....2x....x+1..1...AN*
A209768 v x....x+1..0....2x....x+1..1...N*
A209769 u x....x+1..0....x+1...1....1...AF*
A209770 v x....x+1..0....x+1...1....1...FN
A209771 u x....x+1..0....x+1...x....1...ABN*
A209772 v x....x+1..0....x+1...x....1...BN*
A209773 u x....x+1..0....x+1...2x...1...AF
A209774 v x....x+1..0....x+1...2x...1...FN*
A209775 u x....x+1..0....x+1...x+1..1...AB*
A209776 v x....x+1..0....x+1...x+1..1...BC*
A210033 u 1....1....1....1.....x....1...BCN
A210034 v 1....1....1....1.....x....1...BCDFN
A210035 u 1....1....1....1.....2x...1...BBF
A210036 v 1....1....1....1.....2x...1...BBFF
A210037 u 1....1....1....1.....x+1..1...BCFFN
A210038 v 1....1....1....1.....x+1..1...BCFFN
A210039 u 1....1....1....x.....1....1...BCOT
A210040 v 1....1....1....x.....1....1...BCEN
A210042 u 1....1....1....x.....x....1...BCDEOT*
A124927 v 1....1....1....x.....x....1...BCDET*
A210041 u 1....1....1....x.....2x...1...BFO
A209758 v 1....1....1....x.....2x...1...BCFO
A210187 u 1....1....1....x.....x+1..1...DTF*
A210188 v 1....1....1....x.....x+1..1...DNF*
A210189 u 1....1....1....2x....1....1...BT
A210190 v 1....1....1....2x....1....1...BN
A210191 u 1....1....1....2x....x....1...CO*
A210192 v 1....1....1....2x....x....1...CCO*
A210193 u 1....1....1....2x....x+1..1...CPT
A210194 v 1....1....1....2x....x+1..1...CN
A210195 u 1....1....1....2x....2x...1...BOPT*
A210196 v 1....1....1....2x....2x...1...BCC*
A210197 u 1....1....1....x+1...1....1...BCOT
A210198 v 1....1....1....x+1...1....1...BCEN
A210199 u 1....1....1....x+1...x....1...DFT
A210200 v 1....1....1....x+1...x....1...DFO*
A210201 u 1....1....1....x+1...2x...1...BFP
A210202 v 1....1....1....x+1...2x...1...BF
A210203 u 1....1....1....x+1...x+1..1...BDOP
A210204 v 1....1....1....x+1...x+1..1...BCDN*
A210211 u x....1....1....1.....2x...1...BCFN
A210212 v x....1....1....1.....2x...1...BFN
A210213 u x....1....1....1.....x+1..1...CFFN
A210214 v x....1....1....1.....x+1..1...CFFO
A210215 u x....1....1....x.....x....1...BCDFT^
A210216 v x....1....1....x.....x....1...BCFO^
A210217 u x....1....1....x.....2x...1...CDF^
A210218 v x....1....1....x.....2x...1...BCF^
A210219 u x....1....1....x.....x+1..1...CNSTF*
A210220 v x....1....1....x.....x+1..1...FNNT*
A104698 u x....1....1....2x......1..1...CENS*
A210220 v x....1....1....2x....x+1..1...DNNT*
A210223 u x....1....1....2x....x....1...CD^
A210224 v x....1....1....2x....x....1...CO^
A210225 u x....1....1....2x....x+1..1...CNP
A210226 v x....1....1....2x....x+1..1...NOT
A210227 u x....1....1....2x....2x...1...CDP^
A210228 v x....1....1....2x....2x...1...C^
A210229 u x....1....1....x+1...1....1...CFNN
A210230 v x....1....1....x+1...1....1...CCN
A210231 u x....1....1....x+1...x....1...CNT
A210232 v x....1....1....x+1...x....1...NN*
A210233 u x....1....1....x+1...2x...1...CNP
A210234 v x....1....1....x+1...2x...1...BN
A210235 u x....1....1....x+1...x+1..1...CCFPT*
A210236 v x....1....1....x+1...x+1..1...CFN*
A124927 u x....x....1....1.....1....1...BCDEET*
A210042 v x....1....1....x+1...x+1..1...BDEOT*
A210216 u x....x....1....1.....x....1...BCFO^
A210215 v x....x....1....1.....x....1...BCDFT^
A210549 u x....x....1....1.....2x...1...BCF^
A210550 v x....x....1....1.....2x...1...BDF^
A172431 u x....x....1....1.....x+1..1...CEFN*
A210551 v x....x....1....1.....x+1..1...CFOT*
A210552 u x....x....1....x.....1....1...BBCFNO
A210553 v x....x....1....x.....1....1...BNNFB
A208341 u x....x....1....x.....x+1..1...BCFFN
A210554 v x....x....1....x.....x+1..1...BNFFT
A210555 u x....x....1....2x....1....1...BCNN
A210556 v x....x....1....2x....1....1...BENP
A210557 u x....x....1....2x....x+1..1...CNP
A210558 v x....x....1....2x....x+1..1...N
A210559 u x....x....1....x+1...1....1...CEF
A210560 v x....x....1....x+1...1....1...OFNS
A210561 u x....x....1....x+1...x....1...BCNP^
A210562 v x....x....1....x+1...x....1...BDP*^
A210563 u x....x....1....x+1...2x...1...CFP^
A210564 v x....x....1....x+1...2x...1...DF^
A013609 u x....x....1....x+1...x+1..1...BCEPT*
A209757 v x....x....1....x+1...x+1..1...BCOS*
A209819 u x....2x...1....x+1...x....1...CFN^
A209820 v x....2x...1....x+1...x....1...DF^
A209996 u x....2x...1....x+1...2x...1...CP^
A209998 v x....2x...1....x+1...2x...1...DP^
A209999 u x....x+1..1....1.....x+1..1...FN*
A210287 v x....x+1..1....1.....x+1..1...CFT*
A210565 u x....x+1..1....x.....1....1...FNT*
A210595 v x....x+1..1....x.....1....1...FNNT
A210598 u x....x+1..1....x+1...2x...1...FN*
A210599 v x....x+1..1....x+1...2x...1...FN
A210600 u x....x+1..1....x+1...x+1..1...BF*
A210601 v x....x+1..1....x+1...x+1..1...BF*
A210597 u 2x...1....1....x+1...1....1...BF
A210601 v 2x...1....1....x+1...1....1...BFN*
A210603 u 2x...1....1....x+1...x+1..1...BF
A210738 v 2x...1....1....x+1...x+1..1...CBF*
A210739 u 2x...x....1....x+1...x....1...CF^
A210740 v 2x...x....1....x+1...x....1...DF*^
A210741 u 2x...x....1....x+1...x+1..1...BCFO
A210742 v 2x...x....1....x+1...x+1..1...CFO*
A210743 u 2x...x+1..1....x+1...1....1...F
A210744 v 2x...x+1..1....x+1...1....1...FN
A210747 u 2x...x+1..1....x+1...x+1..1...FF
A210748 v 2x...x+1..1....x+1...x+1..1...CFF*
A210749 u x+1..1....1....x+1...2x...1...BCF
A210750 v x+1..1....1....x+1...2x...1...BF
A210751 u x+1..x....1....x+1...2x...1...FNT
A210752 v x+1..x....1....x+1...2x...1...FN
A210753 u x+1..x....1....x+1...x+1..1...BNZ*
A210754 v x+1..x....1....x+1...x+1..1...BCT*
A210755 u x+1..2x...1....x+1...x+1..1...N*
A210756 v x+1..2x...1....x+1...x+1..1...CT*
A210789 u 1....x....0....x+2...x-1..0...CFFN
A210790 v 1....x....0....x+2...x-1..0...CEFF
A210791 u 1....x....0....x-1...x+2..0...CFNP
A210792 v 1....x....0....x-1...x+2..0...CF
A210793 u 1....x+1..0....x+2...x-1..0...CFNP
A210794 v 1....x+1..0....x+2...x-1..0...FPP
A210795 u 1....x....1....x+2...x-1..0...FN
A210796 v 1....x....1....x+2...x-1..0...FO
A210797 u 1....x....0....x+2...x-1..1...CF
A210798 v 1....x....0....x+2...x-1..1...F
A210799 u 1....x+1..1....x+2...x-1..0...FN
A210800 v 1....x+1..1....x+2...x-1..0...F
A210801 u 1....x+1..1....x+2...x-1..1...FN
A210802 v 1....x+1..1....x+2...x-1..1...F
A210803 u 1....x....0....x-1...x+3..0...F*
A210804 v 1....x....0....x-1...x+3..0...F*
A210805 u 1....x....0....x+2...x-1.-1...CFFN
A210806 v 1....x....0....x+2...x-1.-1...FF
A210858 u 1....x....0....x+n...x....0...CFT*
A210859 v 1....x....0....x+n...x....0...FN*
A210860 u 1....x+1..0....x+n...x....0...F
A210861 v 1....x+1..0....x+n...x....0...F*
A210862 u 1....x....1....x+n-1.x....0...FN
A210863 v 1....x....1....x+n-1.x....0...FS
A210864 u 1....x....1....x+n...x....0...FN
A210865 v 1....x....1....x+n...x....0...FT
A210866 u 1....x....0....x+n...x...-x...CFT
A210867 v 1....x....0....x+n...x...-x...FN
A210868 u 1....x....0....x+1...x-1..0...BCFN
A210869 v 1....x....0....x+1...x-1..0...BBCFNZ
A210870 u 1....x....0....x+1...x-1..1...CFFN
A210871 v 1....x....0....x+1...x-1..1...CFF
A210872 u x....1...-1....x.....x....1...BDFZ^
A210873 v x....1...-1....x.....x....1...BCFN^
A210876 u x....1....1....x.....x....x...BCCF^
A210877 v x....1....1....x.....x....x...BDFNZ^
A210878 u x....2x...0....x+1...x....1...DFZ^
A210879 v x....2x...0....x+1...x....1...FC*^
Some of these triangles have irregular row lengths, making it difficult to retrieve individual rows/columns/diagonals without actually computing the recurrence. - Georg Fischer, Sep 04 2021

Examples

			First five rows:
1
1...1
1...3...1
1...5...4...1
1...7...9...5...1
First five polynomials u(n,x):
1
1 + x
1 + 3x + x^2
1 + 5x + 4x^2 + x^3
1 + 7x + 9x^2 + 5x^3 + x^4
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208510 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A029653 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=(x+1)*u(n-1,x)+x for n>2, with u(n,2)=x+1.

Extensions

Corrected by Philippe Deléham, Apr 10 2012
Corrections and additions by Clark Kimberling, May 09 2012
Corrections in the overview by Georg Fischer, Sep 04 2021

A001076 Denominators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, 416020, 1762289, 7465176, 31622993, 133957148, 567451585, 2403763488, 10182505537, 43133785636, 182717648081, 774004377960, 3278735159921, 13888945017644, 58834515230497, 249227005939632, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001077(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = -1, a(2*n) with b(2*n) := A001077(2*n), n >= 1, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = +1 (cf. Emerson reference).
Bisection: a(2*n+1) = T(2*n+1, sqrt(5))/sqrt(5) = A007805(n), n >= 0 and a(2*n) = 4*S(n-1,18), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. S(n,18)=A049660(n+1). - Wolfdieter Lang, Jan 10 2003
Apart from initial terms, this is the Pisot sequence E(4,17), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
This is also the Horadam sequence (0,1,1,4), having the recurrence relation a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 1. a(n) / a(n-1) converges to 5^1/2 + 2 as n approaches infinity. 5^(1/2) + 2 can also be written as (2 * Phi) + 1 and Phi^2 + Phi. - Ross La Haye, Aug 18 2003
Numerators of continued fraction [4, 4, 4, ...], where the convergents to [4, 4, 4, ...] = (4/1, 17/4, 72/17, ...). Let X = the 2 X 2 matrix [0, 1; 1, 4]; then X^n = [a(n-1), a(n); a(n), a(n+1)]; e.g., X^3 = [4, 17; 17, 72]. Let C = the limit of a(n)/a(n-1) = 2 + sqrt(5) = 4.236067977...; then C^n = a(n+1) + (1/C)*a(n), where (1/C) = 0.236067977... . Example: C^3 = 76.01315556..., = 72 + 17*(0.2360679...). - Gary W. Adamson, Dec 15 2007, corrected by Greg Dresden, Sep 16 2019, corrected by Alex Mark, Jul 21 2020
Sqrt(5) = 4/2 + 4/17 + 4/(17*305) + 4/(305*5473) + 4/(5473*98209) + ... . - Gary W. Adamson, Dec 15 2007
a(p) == 20^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009
a(n) = A167808(3*n). - Reinhard Zumkeller, Nov 12 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 4's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Moreover, a(n) is the second binomial transform of (0,1,0,5,0,25,...) (see also A033887). This fact can be proved similarly like the proof of Paul Barry's remark in A033887 by using the following scaling identity for delta-Fibonacci numbers: y^n b(n;x/y) = Sum_{k=0..n} binomial(n,k) (y-1)^(n-k) b(k;x) and the fact that b(n;2) = (1-(-1)^n) 5^floor(n/2). - Roman Witula, Jul 12 2012
Binomial transform of 0, 1, 2, 8, 24, 80, 256, ... (A063727 with offset 1). - R. J. Mathar, Feb 05 2014
For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,4} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
With offset 1 is the INVERT transform of A006190: (1, 3, 10, 33, 109, 360, ...). - Gary W. Adamson, Jul 24 2015
From Rogério Serôdio, Mar 30 2018: (Start)
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)).
gcd(a(n),a(n+k)) = a(gcd(n, k)) for all positive integers n and k. (End)
The initial 0 of this sequence is in contradiction with the fact that 0 is no valid denominator and according to all standard references, the first convergent of a continued fraction is p(0)/q(0) = b(0)/1 where b(0) is the first term of the continued fraction, given by the integer part of the number. One may artificially define q(-1) = 0 to have a recurrent relation q(n) = b(n)*q(n-1) + q(n-2), n >= 1, but then its index should be -1. - M. F. Hasler, Nov 01 2019
Number of 4-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 4-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 4 kinds of squares available. (End)
a(n) is the smallest nonnegative integer that is the sum of n, but no fewer, Fibonacci numbers including negative-index Fibonacci numbers (A039834), with that sum being a(n) = Sum_{i=0..n-1} A000045(3*i+1). a(n) is also the smallest nonnegative integer that is the sum of n, but no fewer, terms each of which is either a Fibonacci number or the negative of a Fibonacci number. (See A027941 for negatives disallowed.) - Mike Speciner, Oct 08 2023
From Enrique Navarrete, Dec 16 2023: (Start)
a(n) is the number of compositions of n when there are P(k) sorts of parts k, with k,n > = 1, where P(k) = A006190(k) is the k-th 3-metallonacci number (see example below).
In general, the number of compositions with k-metallonacci number of parts is counted by the (k+1)-st metallonacci sequence (note k=1 and k=2 are the Fibonacci and the Pell numbers, respectively). (End).
a(n) is the number of tilings of a 2 X n rectangle missing the top right 1 X 1 cell, using 1 X 1 squares, dominoes and right trominoes. Compare to A110679 which is the same problem but without the missing top right cell. - Greg Dresden and Yilin Zhu, Jul 10 2025

Examples

			1 2 9 38 161 (A001077)
-,-,-,--,---, ...
0 1 4 17 72 (A001076)
G.f. = x + 4*x^2 + 17*x^3 + 72*x^4 + 305*x^5 + 1292*x^6 + 5473*x^7 + 23184*x^8 + ...
From _Enrique Navarrete_, Dec 16 2023: (Start)
From the comment on compositions with 3-metallonacci sorts of parts, A006190(k), there are A006190(1)=1 type of 1, A006190(2)=3 types of 2, A006190(3)=10 types of 3, A006190(4)=33 types of 4, A006190(5)=109 types of 5 and A006190(6)=360 types of 6. The following table gives the number of compositions of n=6:
Composition, number of such compositions, number of compositions of this type:
 6,              1,      360;
 5+1,            2,      218;
 4+2,            2,      198;
 3+3,            1,      100;
 4+1+1,          3,       99;
 3+2+1,          6,      180;
 2+2+2,          1,       27;
 3+1+1+1,        4,       40;
 2+2+1+1,        6,       54;
 2+1+1+1+1,      5,       15;
 1+1+1+1+1+1,    1,        1;
for a total of a(6)=1292 compositions of n=6. (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 23.
  • S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. See Table 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Row n=4 of A073133, A172236 and A352361.
Cf. A000045, A001077, A015448, A175183 (Pisano periods).
Partial sums of A033887. First differences of A049652. Bisection of A059973.
Third column of array A028412.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
    
  • Maple
    A001076:=-1/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{0}, Denominator[Convergents[Sqrt[5], 30]]] (* Harvey P. Dale, Dec 10 2011 *)
    a[ n_] := Fibonacci[3*n] / 2; (* Michael Somos, Feb 23 2014 *)
    a[ n_] := ((2 + Sqrt[5])^n - (2 - Sqrt[5])^n) /(2 Sqrt[5]) // Simplify; (* Michael Somos, Feb 23 2014 *)
    LinearRecurrence[{4, 1}, {0, 1}, 26] (* Jean-François Alcover, Sep 23 2017 *)
    a[ n_] := Fibonacci[n, 4]; (* Michael Somos, Nov 02 2021 *)
  • Maxima
    a(n):=sum(4^(n-1-2*k)*binomial(n-k-1,n-2*k-1),k,0,floor((n)/2));/* Vladimir Kruchinin, Oct 02 2022 */
  • MuPAD
    numlib::fibonacci(3*n)/2 $ n = 0..30; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(3*n) / 2}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = imag( (2 + quadgen(20))^n )}; /* Michael Somos, Feb 23 2014 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2*I)/I^(n-1)}; /* Michael Somos, Nov 02 2021 */
    
  • Sage
    [lucas_number1(n,4,-1) for n in range(23)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    [fibonacci(3*n)/2 for n in range(23)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = 4*a(n-1) + a(n-2), n > 1. a(0)=0, a(1)=1.
G.f.: x/(1 - 4*x - x^2).
a(n) = ((2+sqrt(5))^n - (2-sqrt(5))^n)/(2*sqrt(5)).
a(n) = A014445(n)/2 = F(3n)/2.
a(n) = ((-i)^(n-1))*S(n-1, 4*i), with i^2 = -1 and S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0.
a(n) = Sum_{i=0..n} Sum_{j=0..n} Fibonacci(i+j)*n!/(i!j!(n-i-j)!)/2. - Paul Barry, Feb 06 2004
E.g.f.: exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Vladeta Jovovic, Sep 01 2004
a(n) = F(1) + F(4) + F(7) + ... + F(3n-2), for n > 0.
Conjecture: 2a(n+1) = a(n+2) - A001077(n+1). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*F(j)/2. - Paul Barry, Feb 14 2005
a(n) = A048876(n) - A048875(n). - Creighton Dement, Mar 19 2005
Let M = {{0, 1}, {1, 4}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = v[n][[1]]. - Roger L. Bagula, May 29 2005
a(n) = F(n, 4), the n-th Fibonacci polynomial evaluated at x=4. - T. D. Noe, Jan 19 2006
[A015448(n), a(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = (Sum_{k=0..n} Fibonacci(3*k-2)) + 1. - Gary Detlefs, Dec 26 2010
a(n) = (3*(-1)^n*F(n) + 5*F(n)^3)/2, n >= 0. See the general D. Jennings formula given in a comment on triangle A111125, where also the reference is given. Here the second (k=1) row [3,1] applies. - Wolfdieter Lang, Sep 01 2012
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (Sum_{k>=1} (-1)^(k-1)/(F_k*F_(k+1)))^3 = phi^(-3), where F_n is the n-th Fibonacci numbers (A000045) and phi is golden ratio (A001622). - Vladimir Shevelev, Feb 23 2013
G.f.: Q(0)*x/(2-4*x), where Q(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, Feb 23 2014
The o.g.f. A(x) = x/(1 - 4*x - x^2) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0 or equivalently (1 + 8*A(x))*(1 + 8*A(-x)) = 1. The o.g.f. for A049660 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 4*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 4*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(n-1)*a(n+1) = a(n)^2 + (-1)^n (particular case of (5)!);
(7) a(2*n) = 2*a(n)*(2*a(n) + a(n-1));
(8) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(9) a(n) - a(n-2*k+1) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = (2+sqrt(5))^(2*k-1) + (2-sqrt(5))^(2*k-1);
(10) 31|Sum_{k=n..n+9} a(k), for all positive n. (End)
O.g.f.: x*exp(Sum_{n >= 1} Lucas(3*n)*x^n/n) = x + 4*x^2 + 17*x^3 + .... - Peter Bala, Oct 11 2019
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k-1)*C(n-k-1,n-2*k-1). - Vladimir Kruchinin, Oct 02 2022
a(n) = i^(n-1)*S(n-1, -4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
G.f.: x/(1 - 4*x - x^2) = Sum_{n >= 0} x^(n+1) * ( Product_{k = 1..n} (m*k + 4 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
a(n) = 4^(n-1)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4) for n > 0. - Peter Luschny, Mar 30 2025
a(n) = a(n-1) + A110679(n-1) + A110679(n-2) = a(n-1) + Fibonacci(3*n-2). - Greg Dresden and Yilin Zhu, Jul 10 2025

A127672 Monic integer version of Chebyshev T-polynomials (increasing powers).

Original entry on oeis.org

2, 0, 1, -2, 0, 1, 0, -3, 0, 1, 2, 0, -4, 0, 1, 0, 5, 0, -5, 0, 1, -2, 0, 9, 0, -6, 0, 1, 0, -7, 0, 14, 0, -7, 0, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 0, 9, 0, -30, 0, 27, 0, -9, 0, 1, -2, 0, 25, 0, -50, 0, 35, 0, -10, 0, 1, 0, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 2, 0, -36, 0, 105, 0, -112, 0, 54, 0, -12, 0, 1, 0, 13, 0, -91
Offset: 0

Views

Author

Wolfdieter Lang, Mar 07 2007

Keywords

Comments

The row polynomials R(n,x) := Sum_{m=0..n} a(n,m)*x^m have been called Chebyshev C_n(x) polynomials in the Abramowitz-Stegun handbook, p. 778, 22.5.11 (see A049310 for the reference, and note that on p. 774 the S and C polynomials have been mixed up in older printings). - Wolfdieter Lang, Jun 03 2011
This is a signed version of triangle A114525.
The unsigned column sequences (without zeros) are, for m=1..11: A005408, A000290, A000330, A002415, A005585, A040977, A050486, A053347, A054333, A054334, A057788.
The row polynomials R(n,x) := Sum_{m=0..n} a(n,m)*x*m, give for n=2,3,...,floor(N/2) the positive zeros of the Chebyshev S(N-1,x)-polynomial (see A049310) in terms of its largest zero rho(N):= 2*cos(Pi/N) by putting x=rho(N). The order of the positive zeros is falling: n=1 corresponds to the largest zero rho(N) and n=floor(N/2) to the smallest positive zero. Example N=5: rho(5)=phi (golden section), R(2,phi)= phi^2-2 = phi-1, the second largest (and smallest) positive zero of S(4,x). - Wolfdieter Lang, Dec 01 2010
The row polynomial R(n,x), for n >= 1, factorizes into minimal polynomials of 2*cos(Pi/k), called C(k,x), with coefficients given in A187360, as follows.
R(n,x) = Product_{d|oddpart(n)} C(2*n/d,x)
= Product_{d|oddpart(n)} C(2^(k+1)*d,x),
with oddpart(n)=A000265(n), and 2^k is the largest power of 2 dividing n, where k=0,1,2,...
(Proof: R and C are monic, the degree on both sides coincides, and the zeros of R(n,x) appear all on the r.h.s.) - Wolfdieter Lang, Jul 31 2011 [Theorem 1B, eq. (43) in the W. Lang link. - Wolfdieter Lang, Apr 13 2018]
The zeros of the row polynomials R(n,x) are 2*cos(Pi*(2*k+1)/(2*n)), k=0,1, ..., n-1; n>=1 (from those of the Chebyshev T-polynomials). - Wolfdieter Lang, Sep 17 2011
The discriminants of the row polynomials R(n,x) are found under A193678. - Wolfdieter Lang, Aug 27 2011
The determinant of the N X N matrix M(N) with entries M(N;n,m) = R(m-1,x[n]), 1 <= n,m <= N, N>=1, and any x[n], is identical with twice the Vandermondian Det(V(N)) with matrix entries V(N;n,m) = x[n]^(m-1). This is an instance of the general theorem given in the Vein-Dale reference on p. 59. Note that R(0,x) = 2 (not 1). See also the comments from Aug 26 2013 under A049310 and from Aug 27 2013 under A000178. - Wolfdieter Lang, Aug 27 2013
This triangle a(n,m) is also used to express in the regular (2*(n+1))-gon, inscribed in a circle of radius R, the length ratio side/R, called s(2*(n+1)), as a polynomial in rho(2*(n+1)), the length ratio (smallest diagonal)/side. See the bisections ((-1)^(k-s))*A111125(k,s) and A127677 for comments and examples. - Wolfdieter Lang, Oct 05 2013
From Tom Copeland, Nov 08 2015: (Start)
These are the characteristic polynomials a_n(x) = 2*T_n(x/2) for the adjacency matrix of the Coxeter simple Lie algebra B_n, related to the Cheybshev polynomials of the first kind, T_n(x) = cos(n*q) with x = cos(q) (see p. 20 of Damianou). Given the polynomial (x - t)*(x - 1/t) = 1 - (t + 1/t)*x + x^2 = e2 - e1*x + x^2, the symmetric power sums p_n(t,1/t) = t^n + t^(-n) of the zeros of this polynomial may be expressed in terms of the elementary symmetric polynomials e1 = t + 1/t = y and e2 = t*1/t = 1 as p_n(t,1/t) = a_n(y) = F(n,-y,1,0,0,...), where F(n,b1,b2,...,bn) are the Faber polynomials of A263916.
The partial sum of the first n+1 rows given t and y = t + 1/t is PS(n,t) = Sum_{k=0..n} a_n(y) = (t^(n/2) + t^(-n/2))*(t^((n+1)/2) - t^(-(n+1)/2)) / (t^(1/2) - t^(-1/2)). (For n prime, this is related simply to the cyclotomic polynomials.)
Then a_n(y) = PS(n,t) - PS(n-1,t), and for t = e^(iq), y = 2*cos(q), and, therefore, a_n(2*cos(q)) = PS(n,e^(iq)) - PS(n-1,e^(iq)) = 2*cos(nq) = 2*T_n(cos(q)) with PS(n,e^(iq)) = 2*cos(nq/2)*sin((n+1)q/2) / sin(q/2).
(End)
R(45, x) is the famous polynomial used by Adriaan van Roomen (Adrianus Romanus) in his Ideae mathematicae from 1593 to pose four problems, solved by Viète. See, e.g., the Havil reference, pp. 69-74. - Wolfdieter Lang, Apr 28 2018
From Wolfdieter Lang, May 05 2018: (Start)
Some identities for the row polynomials R(n, x) following from the known ones for Chebyshev T-polynomials (A053120) are:
(1) R(-n, x) = R(n, x).
(2) R(n*m, x) = R(n, R(m, x)) = R(m, R(n, x)).
(3) R(2*k+1, x) = (-1)^k*x*S(2*k, sqrt(4-x^2)), k >= 0, with the S row polynomials of A049310.
(4) R(2*k, x) = R(k, x^2-2), k >= 0.
(End)
For y = z^n + z^(-n) and x = z + z^(-1), Hirzebruch notes that y(z) = R(n,x) for the row polynomial of this entry. - Tom Copeland, Nov 09 2019

Examples

			Row n=4: [2,0,-4,0,1] stands for the polynomial 2*y^0 - 4*y^2 + 1*y^4. With y^m replaced by 2^(m-1)*x^m this becomes T(4,x) = 1 - 8*x^2 + 8*x^4.
Triangle begins:
n\m   0   1   2   3   4   5   6   7   8   9  10 ...
0:    2
1:    0   1
2:   -2   0   1
3:    0  -3   0   1
4:    2   0  -4   0   1
5:    0   5   0  -5   0   1
6:   -2   0   9   0  -6   0   1
7:    0  -7   0  14   0  -7   0   1
8:    2   0 -16   0  20   0  -8   0   1
9:    0   9   0 -30   0  27   0  -9   0   1
10:  -2   0  25   0 -50   0  35   0 -10   0   1 ...
Factorization into minimal C-polynomials:
R(12,x) = R((2^2)*3,x) = C(24,x)*C(8,x) = C((2^3)*1,x)*C((2^3)*3,x). - _Wolfdieter Lang_, Jul 31 2011
		

References

  • Julian Havil, The Irrationals, A Story of the Numbers You Can't Count On, Princeton University Press, Princeton and Oxford, 2012, pp. 69-74.
  • F. Hirzebruch et al., Manifolds and Modular Forms, Vieweg 1994 pp. 77, 105.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Row sums (signed): A057079(n-1). Row sums (unsigned): A000032(n) (Lucas numbers). Alternating row sums: A099837(n+3).
Bisection: A127677 (even n triangle, without zero entries), ((-1)^(n-m))*A111125(n, m) (odd n triangle, without zero entries).

Programs

  • Maple
    seq(seq(coeff(2*orthopoly[T](n,x/2),x,j),j=0..n),n=0..20); # Robert Israel, Aug 04 2015
  • Mathematica
    a[n_, k_] := SeriesCoefficient[(2 - t*x)/(1 - t*x + x^2), {x, 0, n}, {t, 0, k}]; Flatten[Table[a[n, k], {n, 0, 12}, {k, 0, n}]] (* L. Edson Jeffery, Nov 02 2017 *)

Formula

a(n,0) = 0 if n is odd, a(n,0) = 2*(-1)^(n/2) if n is even, else a(n,m) = t(n,m)/2^(m-1) with t(n,m):=A053120(n,m) (coefficients of Chebyshev T-polynomials).
G.f. for m-th column (signed triangle): 2/(1+x^2) if m=0 else (x^m)*(1-x^2)/(1+x^2)^(m+1).
Riordan type matrix ((1-x^2)/(1+x^2),x/(1+x^2)) if one puts a(0,0)=1 (instead of 2).
O.g.f. for row polynomials: R(x,z) := Sum_{n>=0} R(n,x)*z^n = (2-x*z)*S(x,z), with the o.g.f. S(x,z) = 1/(1 - x*z + z^2) for the S-polynomials (see A049310).
Note that R(n,x) = R(2*n,sqrt(2+x)), n>=0 (from the o.g.f.s of both sides). - Wolfdieter Lang, Jun 03 2011
a(n,m) := 0 if n < m or n+m odd; a(n,0) = 2*(-1)^(n/2) (n even); else a(n,m) = ((-1)^((n+m)/2 + m))*n*binomial((n+m)/2-1,m-1)/m.
Recursion for n >= 2 and m >= 2: a(n,m) = a(n-1,m-1) - a(n-2,m), a(n,m) = 0 if n < m, a(2*k,1) = 0, a(2*k+1,1) = (2*k+1)*(-1)^k. In addition, for column m=0: a(2*k,0) = 2*(-1)^k, a(2*k+1,0) = 0, k>=0.
Chebyshev T(n,x) = Sum{m=0..n} a(n,m)*2^(m-1)*x^m. - Wolfdieter Lang, Jun 03 2011
R(n,x) = 2*T(n,x/2) = S(n,x) - S(n-2,x), n>=0, with Chebyshev's T- and S-polynomials, showing that they are integer and monic polynomials. - Wolfdieter Lang, Nov 08 2011
From Tom Copeland, Nov 08 2015: (Start)
a(n,x) = sqrt(2 + a(2n,x)), or 2 + a(2n,x) = a(n,x)^2, is a reflection of the relation of the Chebyshev polynomials of the first kind to the cosine and the half-angle formula, cos(q/2)^2 = (1 + cos(q))/2.
Examples: For n = 2, -2 + x^2 = sqrt(2 + 2 - 4*x^2 + x^4).
For n = 3, -3*x + x^3 = sqrt(2 - 2 + 9*x^2 - 6*x^4 + x^6).
(End)
L(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,...,0) x^n/n = h1*x + (-2*h2 + h1^2) x^2/2 + (-3*h1*h2 + h1^3) x^3/3 + ... is a log series generator of the bivariate row polynomials where T(0,0) = 0 and F(n,b1,b2,...,bn) are the Faber polynomials of A263916. exp(L(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2) is the o.g.f. of A049310. - Tom Copeland, Feb 15 2016

Extensions

Name changed and table rewritten by Wolfdieter Lang, Nov 08 2011

A057079 Periodic sequence: repeat [1,2,1,-1,-2,-1]; expansion of (1+x)/(1-x+x^2).

Original entry on oeis.org

1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1, 1, 2, 1, -1, -2, -1
Offset: 0

Views

Author

Wolfdieter Lang, Aug 04 2000

Keywords

Comments

Inverse binomial transform of A057083. Binomial transform of A061347. The sums of consecutive pairs of elements give A084103. - Paul Barry, May 15 2003
Hexaperiodic sequence identical to its third differences. - Paul Curtz, Dec 13 2007
a(n+1) is the Hankel transform of A001700(n+1)-A001700(n). - Paul Barry, Apr 21 2009
Non-simple continued fraction expansion of 1 = 1+1/(2+1/(1+1/(-1+...))). - R. J. Mathar, Mar 08 2012
Pisano period lengths: 1, 3, 2, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, ... - R. J. Mathar, Aug 10 2012
Alternating row sums of Riordan triangle A111125. - Wolfdieter Lang, Oct 18 2012
Periodic sequences of this type can be also calculated by a(n) = c + floor(q/(p^m-1)*p^n) mod p, where c is a constant, q is the number representing the periodic digit pattern and m is the period length. c, p and q can be calculated as follows: Let D be the array representing the number pattern to be repeated, m = size of D, max = maximum value of elements in D, min = minimum value of elements in D. Than c := min, p := max - min + 1 and q := p^m*sum_{i=1..m} (D(i)-min)/p^i. Example: D = (1, 2, 1, -1, -2, -1), c = -2, m = 6, p = 5 and q = 12276 for this sequence. - Hieronymus Fischer, Jan 04 2013

Examples

			G.f. = 1 + 2*x + x^2 - x^3 - 2*x^4 - x^5 + x^6 + 2*x^7 + x^8 - x^9 - 2*x^10 + x^11 + ...
		

Crossrefs

Cf. A049310. Apart from signs, same as A061347.

Programs

  • Maple
    A057079:=n->[1, 2, 1, -1, -2, -1][(n mod 6)+1]: seq(A057079(n), n=0..100); # Wesley Ivan Hurt, Mar 10 2015
  • Mathematica
    a[n_] := {1, 2, 1, -1, -2, -1}[[Mod[n, 6] + 1]]; Array[a, 100, 0] (* Jean-François Alcover, Jul 05 2013 *)
    CoefficientList[Series[(1 + x)/(1 - x + x^2), {x, 0, 71}], x] (* Michael De Vlieger, Jul 10 2017 *)
    PadRight[{},100,{1,2,1,-1,-2,-1}] (* Harvey P. Dale, Nov 11 2024 *)
  • PARI
    {a(n) = [1, 2, 1, -1, -2, -1][n%6 + 1]}; /* Michael Somos, Jul 14 2006 */
    
  • PARI
    {a(n) = if( n<0, n = 2-n); polcoeff( (1 + x) / (1 - x + x^2) + x * O(x^n), n)}; /* Michael Somos, Jul 14 2006 */
    
  • PARI
    a(n)=2^(n%3%2)*(-1)^(n\3) \\ Tani Akinari, Aug 15 2013

Formula

a(n) = S(n, 1) + S(n-1, 1) = S(2*n, sqrt(3)); S(n, x) := U(n, x/2), Chebyshev polynomials of 2nd kind, A049310. S(n, 1) = A010892(n).
a(n) = 2*cos((n-1)*Pi/3) = a(n-1) - a(n-2) = -a(n-3) = a(n-6) = (A022003(n+1)+1)*(-1)^floor(n/3). Unsigned a(n) = 4 - a(n-1) - a(n-2). - Henry Bottomley, Mar 29 2001
a(n) = (-1)^floor(n/3) + ((-1)^floor((n-1)/3) + (-1)^floor((n+1)/3))/2. - Mario Catalani (mario.catalani(AT)unito.it), Jan 07 2003
a(n) = (1/2 - sqrt(3)*i/2)^(n-1) + (1/2 + sqrt(3)*i/2)^(n-1) = cos(Pi*n/3) + sqrt(3)*sin(Pi*n/3). - Paul Barry, Mar 15 2004
The period 3 sequence (2, -1, -1, ...) has a(n) = 2*cos(2*Pi*n/3) = (-1/2 - sqrt(3)*i/2)^n + (-1/2 + sqrt(3)*i/2)^n. - Paul Barry, Mar 15 2004
Euler transform of length 6 sequence [2, -2, -1, 0, 0, 1]. - Michael Somos, Jul 14 2006
G.f.: (1 + x) / (1 - x + x^2) = (1 - x^2)^2 * (1 - x^3) / ((1 - x)^2 * (1 - x^6)). a(n) = a(2-n) for all n in Z. - Michael Somos, Jul 14 2006
a(n) = A033999(A002264(n))*(A000035(A010872(n))+1). - Hieronymus Fischer, Jun 20 2007
a(n) = (3*A033999(A002264(n)) - A033999(n))/2. - Hieronymus Fischer, Jun 20 2007
a(n) = (-1)^floor(n/3)*((n mod 3) mod 2 + 1). - Hieronymus Fischer, Jun 20 2007
a(n) = (3*(-1)^floor(n/3) - (-1)^n)/2. - Hieronymus Fischer, Jun 20 2007
a(n) = (-1)^((n-1)/3) + (-1)^((1-n)/3). - Jaume Oliver Lafont, May 13 2010
E.g.f.: E(x) = S(0), S(k) = 1 + 2*x/(6*k+1 - x*(6*k+1)/(4*(3*k+1) + x + 4*x*(3*k+1)/(6*k + 3 - x - x*(6*k+3)/(3*k + 2 + x - x*(3*k+2)/(12*k + 10 + x - x*(12*k+10)/(x - (6*k+6)/S(k+1))))))); (continued fraction). - Sergei N. Gladkovskii, Dec 14 2011
a(n) = -2 + floor((281/819)*10^(n+1)) mod 10. - Hieronymus Fischer, Jan 04 2013
a(n) = -2 + floor((11/14)*5^(n+1)) mod 5. - Hieronymus Fischer, Jan 04 2013
a(n) = A010892(n) + A010892(n-1).
a(n) = ( (1+i*sqrt(3))^(n-1) + (1-i*sqrt(3))^(n-1) )/2^(n-1), where i=sqrt(-1). - Bruno Berselli, Dec 01 2014
a(n) = 2*sin((2n+1)*Pi/6). - Wesley Ivan Hurt, Apr 04 2015
a(n) = hypergeom([-n/2-2, -n/2-5/2], [-n-4], 4). - Peter Luschny, Dec 17 2016
G.f.: 1 / (1 - 2*x / (1 + 3*x / (2 - x))). - Michael Somos, Dec 29 2016
a(n) = (2*n+1)*(Sum_{k=0..n} ((-1)^k/(2*k+1))*binomial(n+k,2*k)) for n >= 0. - Werner Schulte, Jul 10 2017
Sum_{n>=0} (a(n)/(2*n+1))*x^(2*n+1) = arctan(x/(1-x^2)) for -1 < x < 1. - Werner Schulte, Jul 10 2017
E.g.f.: exp(x/2)*(sqrt(3)*cos(sqrt(3)*x/2) + 3*sin(sqrt(3)*x/2))/sqrt(3). - Stefano Spezia, Aug 04 2025

A034807 Triangle T(n,k) of coefficients of Lucas (or Cardan) polynomials.

Original entry on oeis.org

2, 1, 1, 2, 1, 3, 1, 4, 2, 1, 5, 5, 1, 6, 9, 2, 1, 7, 14, 7, 1, 8, 20, 16, 2, 1, 9, 27, 30, 9, 1, 10, 35, 50, 25, 2, 1, 11, 44, 77, 55, 11, 1, 12, 54, 112, 105, 36, 2, 1, 13, 65, 156, 182, 91, 13, 1, 14, 77, 210, 294, 196, 49, 2, 1, 15, 90, 275, 450, 378, 140, 15, 1, 16, 104
Offset: 0

Views

Author

Keywords

Comments

These polynomials arise in the following setup. Suppose G and H are power series satisfying G + H = G*H = 1/x. Then G^n + H^n = (1/x^n)*L_n(-x).
Apart from signs, triangle of coefficients when 2*cos(nt) is expanded in terms of x = 2*cos(t). For example, 2*cos(2t) = x^2 - 2, 2*cos(3t) = x^3 - 3x and 2*cos(4t) = x^4 - 4x^2 + 2. - Anthony C Robin, Jun 02 2004
Triangle of coefficients of expansion of Z_{nk} in terms of Z_k.
Row n has 1 + floor(n/2) terms. - Emeric Deutsch, Dec 25 2004
T(n,k) = number of k-matchings of the cycle C_n (n > 1). Example: T(6,2)=9 because the 2-matchings of the hexagon with edges a, b, c, d, e, f are ac, ad, ae, bd, be, bf, ce, cf and df. - Emeric Deutsch, Dec 25 2004
An example for the first comment: G=c(x), H=1/(x*c(x)) with c(x) the o.g.f. Catalan numbers A000108: (x*c(x))^n + (1/c(x))^n = L(n,-x)= Sum_{k=0..floor(n/2)} T(n,k)*(-x)^k.
This triangle also supplies the absolute values of the coefficients in the multiplication formulas for the Lucas numbers A000032.
From L. Edson Jeffery, Mar 19 2011: (Start)
This sequence is related to rhombus substitution tilings. A signed version of it (see A132460), formed as a triangle with interlaced zeros extending each row to n terms, begins as
{2}
{1, 0}
{1, 0, -2}
{1, 0, -3, 0}
{1, 0, -4, 0, 2}
{1, 0, -5, 0, 5, 0}
....
For the n X n tridiagonal unit-primitive matrix G_(n,1) (n >= 2) (see the L. E. Jeffery link below), defined by
G_(n,1) =
(0 1 0 ... 0)
(1 0 1 0 ... 0)
(0 1 0 1 0 ... 0)
...
(0 ... 0 1 0 1)
(0 ... 0 2 0),
Row n (i.e., {T(n,k)}, k=0..n) of the signed table gives the coefficients of its characteristic function: c_n(x) = Sum_{k=0..n} T(n,k)*x^(n-k) = 0. For example, let n=3. Then
G_(3,1) =
(0 1 0)
(1 0 1)
(0 2 0),
and row 3 of the table is {1,0,-3,0}. Hence c_3(x) = x^3 - 3*x = 0. G_(n,1) has n distinct eigenvalues (the solutions of c_n(x) = 0), given by w_j = 2*cos((2*j-1)*Pi/(2*n)), j=1..n. (End)
For n > 0, T(n,k) is the number of k-subsets of {1,2,...,n} which contain neither consecutive integers nor both 1 and n. Equivalently, T(n,k) is the number of k-subsets without neighbors of a set of n points on a circle. - José H. Nieto S., Jan 17 2012
With the first column omitted, this gives A157000. - Philippe Deléham, Mar 17 2013
The number of necklaces of k black and n - k white beads with no adjacent black beads (Kaplansky 1943). Coefficients of the Dickson polynomials D(n,x,-a). - Peter Bala, Mar 09 2014
From Tom Copeland, Nov 07 2015: (Start)
This triangular array is composed of interleaved rows of reversed, unsigned A127677 (cf. A156308, A217476, A263916) and reversed A111125 (cf. A127672).
See also A113279 for another connection to symmetric and Faber polynomials.
The difference of consecutive rows gives the previous row shifted.
For relations among the characteristic polynomials of Cartan matrices of the Coxeter root groups, Chebyshev polynomials, cyclotomic polynomials, and the polynomials of this entry, see Damianou (p. 12, 20, and 21) and Damianou and Evripidou (p. 7). (End)
Diagonals are related to multiplicities of eigenvalues of the Laplacian on hyperspheres through A029635. - Tom Copeland, Jan 10 2016
For n>=3, also the independence and matching polynomials of the n-cycle graph C_n. See also A284966. - Eric W. Weisstein, Apr 06 2017
Apparently, with the rows aerated and then the 2s on the diagonal removed, this matrix becomes the reverse, or mirror, of unsigned A117179. See also A114525 - Tom Copeland, May 30 2017
Briggs's (1633) table with an additional column of 2s on the right can be used to generate this table. See p. 69 of the Newton reference. - Tom Copeland, Jun 03 2017
From Liam Solus, Aug 23 2018: (Start)
For n>3 and k>0, T(n,k) equals the number of Markov equivalence classes with skeleton the cycle on n nodes having exactly k immoralities. See Theorem 2.1 of the article by A. Radhakrishnan et al. below.
For n>2 odd and r = floor(n/2)-1, the n-th row is the coefficient vector of the Ehrhart h*-polynomial of the r-stable (n,2)-hypersimplex. See Theorem 4.14 in the article by B. Braun and L. Solus below.
(End)
Conjecture: If a(n) = H(a,b,c,d,n) is a second-order linear recurrence with constant coefficients defined as a(0) = a, a(1)= b, a(n) = c*a(n-1) + d*a(n-2) then a(m*n) = H(a, H(a,b,c,d,m), Sum_{k=0..floor(m/2)} T(m,k)*c^(m-2*k)*d^k, (-1)^(m+1)*d^m, n) (Wolfdieter Lang). - Gary Detlefs, Feb 06 2023
For the proof of the preceding conjecture see the Detlefs and Lang link. There also proofs for several properties of this table are found. - Wolfdieter Lang, Apr 25 2023
From Mohammed Yaseen, Nov 09 2024: (Start)
Let m - 1/m = x, then
m^2 + 1/m^2 = x^2 + 2,
m^3 - 1/m^3 = x^3 + 3*x,
m^4 + 1/m^4 = x^4 + 4*x^2 + 2,
m^5 - 1/m^5 = x^5 + 5*x^3 + 5*x,
m^6 + 1/m^6 = x^6 + 6*x^4 + 9*x^2 + 2,
m^7 - 1/m^7 = x^7 + 7*x^5 + 14*x^3 + 7*x, etc. (End)

Examples

			I have seen two versions of these polynomials: One version begins L_0 = 2, L_1 = 1, L_2 = 1 + 2*x, L_3 = 1 + 3*x, L_4 = 1 + 4*x + 2*x^2, L_5 = 1 + 5*x + 5*x^2, L_6 = 1 + 6*x + 9*x^2 + 2*x^3, L_7 = 1 + 7*x + 14*x^2 + 7*x^3, L_8 = 1 + 8*x + 20*x^2 + 16*x^3 + 2*x^4, L_9 = 1 + 9*x + 27*x^2 + 30*x^3 + 9*x^4, ...
The other version (probably the more official one) begins L_0(x) = 2, L_1(x) = x, L_2(x) = 2 + x^2, L_3(x) = 3*x + x^3, L_4(x) = 2 + 4*x^2 + x^4, L_5(x) = 5*x + 5*x^3 + x^5, L_6(x) = 2 + 9*x^2 + 6*x^4 + x^6, L_7(x) = 7*x + 14*x^3 + 7*x^5 + x^7, L_8(x) = 2 + 16*x^2 + 20*x^4 + 8*x^6 + x^8, L_9(x) = 9*x + 30*x^3 + 27*x^5 + 9*x^7 + x^9.
From _John Blythe Dobson_, Oct 11 2007: (Start)
Triangle begins:
  2;
  1;
  1,  2;
  1,  3;
  1,  4,  2;
  1,  5,  5;
  1,  6,  9,   2;
  1,  7, 14,   7;
  1,  8, 20,  16,   2;
  1,  9, 27,  30,   9;
  1, 10, 35,  50,  25,   2;
  1, 11, 44,  77,  55,  11;
  1, 12, 54, 112, 105,  36,   2;
  1, 13, 65, 156, 182,  91,  13;
  1, 14, 77, 210, 294, 196,  49,  2;
  1, 15, 90, 275, 450, 378, 140, 15;
(End)
From _Peter Bala_, Mar 20 2025: (Start)
Let S = x + y and M = -x*y. Then the triangle gives the coefficients when expressing the symmetric polynomial x^n + y^n as a polynomial in S and M. For example,
x^2 + y^2 = S^2 + 2*M; x^3 + y^3 = S^3 + 3*S*M; x^4 + y^4 = S^4 + 4*(S^2)*M + 2*M^2;
x^5 + y^5 = S^5 + 5*(S^3)*M + 5*S*M^2; x^6 + y^6 = S^6 + 6*(S^4)*M + 9*(S^2)*M^2 + 2*M^3. See Woko. In general x^n + y^n = 2*(-i)^n *(sqrt(M))^n * T(n, i*S/(2*sqrt(M))), where T(n, x) denotes the n-th Chebyshev polynomial of the first kind. (End)
		

References

  • A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 148.
  • C. D. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications. New York, etc.: John Wiley & Sons, 2001. (Chapter 13, "Pascal-like Triangles," is devoted to the present triangle.)
  • The Royal Society Newton Tercentenary Celebrations, Cambridge Univ. Press, 1947.

Crossrefs

Programs

  • Maple
    T:= proc(n,k) if n=0 and k=0 then 2 elif k>floor(n/2) then 0 else n*binomial(n-k,k)/(n-k) fi end: for n from 0 to 15 do seq(T(n,k), k=0..floor(n/2)) od; # yields sequence in triangular form # Emeric Deutsch, Dec 25 2004
  • Mathematica
    t[0, 0] = 2; t[n_, k_] := Binomial[n-k, k] + Binomial[n-k-1, k-1]; Table[t[n, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Jean-François Alcover, Dec 30 2013 *)
    CoefficientList[Table[x^(n/2) LucasL[n, 1/Sqrt[x]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    Table[Select[Reverse[CoefficientList[LucasL[n, x], x]], 0 < # &], {n, 0, 16}] // Flatten (* Robert G. Wilson v, May 03 2017 *)
    CoefficientList[FunctionExpand @ Table[2 (-x)^(n/2) Cos[n ArcSec[2 Sqrt[-x]]], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
    CoefficientList[Table[2 (-x)^(n/2) ChebyshevT[n, 1/(2 Sqrt[-x])], {n, 0, 15}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
  • PARI
    {T(n, k) = if( k<0 || 2*k>n, 0, binomial(n-k, k) + binomial(n-k-1, k-1) + (n==0))}; /* Michael Somos, Jul 15 2003 */

Formula

Row sums = A000032. T(2n, n-1) = A000290(n), T(2n+1, n-1) = A000330(n), T(2n, n-2) = A002415(n). T(n, k) = A029635(n-k, k), if n>0. - Michael Somos, Apr 02 1999
Lucas polynomial coefficients: 1, -n, n*(n-3)/2!, -n*(n-4)*(n-5)/3!, n*(n-5)*(n-6)*(n-7)/4!, - n*(n-6)*(n-7)*(n-8)*(n-9)/5!, ... - Herb Conn and Gary W. Adamson, May 28 2003
G.f.: (2-x)/(1-x-x^2*y). - Vladeta Jovovic, May 31 2003
T(n, k) = T(n-1, k) + T(n-2, k-1), n>1. T(n, 0) = 1, n>0. T(n, k) = binomial(n-k, k) + binomial(n-k-1, k-1) = n*binomial(n-k-1, k-1)/k, 0 <= 2*k <= n except T(0, 0) = 2. - Michael Somos, Apr 02 1999
T(n,k) = (n*(n-1-k)!)/(k!*(n-2*k)!), n>0, k>=0. - Alexander Elkins (alexander_elkins(AT)hotmail.com), Jun 09 2007
O.g.f.: 2-(2xt+1)xt/(-t+xt+(xt)^2). (Cf. A113279.) - Tom Copeland, Nov 07 2015
T(n,k) = A011973(n-1,k) + A011973(n-3,k-1) = A011973(n,k) - A011973(n-4,k-2) except for T(0,0)=T(2,1)=2. - Xiangyu Chen, Dec 24 2020
L_n(x) = ((x+sqrt(x^2+4))/2)^n + (-((x+sqrt(x^2+4))/2))^(-n). See metallic means. - William Krier, Sep 01 2023

Extensions

Improved description, more terms, etc., from Michael Somos

A014445 Even Fibonacci numbers; or, Fibonacci(3*n).

Original entry on oeis.org

0, 2, 8, 34, 144, 610, 2584, 10946, 46368, 196418, 832040, 3524578, 14930352, 63245986, 267914296, 1134903170, 4807526976, 20365011074, 86267571272, 365435296162, 1548008755920, 6557470319842, 27777890035288, 117669030460994, 498454011879264, 2111485077978050
Offset: 0

Views

Author

Keywords

Comments

a(n) = 3^n*b(n;2/3) = -b(n;-2), but we have 3^n*a(n;2/3) = F(3n+1) = A033887 and a(n;-2) = F(3n-1) = A015448, where a(n;d) and b(n;d), n=0,1,...,d, denote the so-called delta-Fibonacci numbers (the argument "d" of a(n;d) and b(n;d) is abbreviation of the symbol "delta") defined by the following equivalent relations: (1 + d*((sqrt(5) - 1)/2))^n = a(n;d) + b(n;d)*((sqrt(5) - 1)/2) equiv. a(0;d)=1, b(0;d)=0, a(n+1;d) = a(n;d) + d*b(n;d), b(n+1;d) = d*a(n;d) + (1-d)b(n;d) equiv. a(0;d)=a(1;d)=1, b(0;1)=0, b(1;d)=d, and x(n+2;d) + (d-2)*x(n+1;d) + (1-d-d^2)*x(n;d) = 0 for every n=0,1,...,d, and x=a,b equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k-1)*(-d)^k, and b(n;d) = Sum_{k=0..n} C(n,k)*(-1)^(k-1)*F(k)*d^k equiv. a(n;d) = Sum_{k=0..n} C(n,k)*F(k+1)*(1-d)^(n-k)*d^k, and b(n;d) = Sum_{k=1..n} C(n;k)*F(k)*(1-d)^(n-k)*d^k. The sequences a(n;d) and b(n;d) for special values d are connected with many known sequences: A000045, A001519, A001906, A015448, A020699, A033887, A033889, A074872, A081567, A081568, A081569, A081574, A081575, A163073 (see also the papers of Witula et al.). - Roman Witula, Jul 12 2012
For any odd k, Fibonacci(k*n) = sqrt(Fibonacci((k-1)*n) * Fibonacci((k+1)*n) + Fibonacci(n)^2). - Gary Detlefs, Dec 28 2012
The ratio of consecutive terms approaches the continued fraction 4 + 1/(4 + 1/(4 +...)) = A098317. - Hal M. Switkay, Jul 05 2020

Examples

			G.f. = 2*x + 8*x^2 + 34*x^3 + 144*x^4 + 610*x^5 + 2584*x^6 + 10946*x^7 + ...
		

References

  • Arthur T. Benjamin and Jennifer J. Quinn,, Proofs that really count: the art of combinatorial proof, M.A.A., 2003, id. 232.

Crossrefs

Programs

Formula

a(n) = Sum_{k=0..n} binomial(n, k)*F(k)*2^k. - Benoit Cloitre, Oct 25 2003
From Lekraj Beedassy, Jun 11 2004: (Start)
a(n) = 4*a(n-1) + a(n-2), with a(-1) = 2, a(0) = 0.
a(n) = 2*A001076(n).
a(n) = (F(n+1))^3 + (F(n))^3 - (F(n-1))^3. (End)
a(n) = Sum_{k=0..floor((n-1)/2)} C(n, 2*k+1)*5^k*2^(n-2*k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 22 2004
a(n) = Sum_{k=0..n} F(n+k)*binomial(n, k). - Benoit Cloitre, May 15 2005
O.g.f.: 2*x/(1 - 4*x - x^2). - R. J. Mathar, Mar 06 2008
a(n) = second binomial transform of (2,4,10,20,50,100,250). This is 2* (1,2,5,10,25,50,125) or 5^n (offset 0): *2 for the odd numbers or *4 for the even. The sequences are interpolated. Also a(n) = 2*((2+sqrt(5))^n - (2-sqrt(5))^n)/sqrt(20). - Al Hakanson (hawkuu(AT)gmail.com), May 02 2009
a(n) = 3*F(n-1)*F(n)*F(n+1) + 2*F(n)^3, F(n)=A000045(n). - Gary Detlefs, Dec 23 2010
a(n) = (-1)^n*3*F(n) + 5*F(n)^3, n >= 0. See the D. Jennings formula given in a comment on A111125, where also the reference is given. - Wolfdieter Lang, Aug 31 2012
With L(n) a Lucas number, F(3*n) = F(n)*(L(2*n) + (-1)^n) = (L(3*n+1) + L(3*n-1))/5 starting at n=1. - J. M. Bergot, Oct 25 2012
a(n) = sqrt(Fibonacci(2*n)*Fibonacci(4*n) + Fibonacci(n)^2). - Gary Detlefs, Dec 28 2012
For n > 0, a(n) = 5*F(n-1)*F(n)*F(n+1) - 2*F(n)*(-1)^n. - J. M. Bergot, Dec 10 2015
a(n) = -(-1)^n * a(-n) for all n in Z. - Michael Somos, Nov 15 2018
a(n) = (5*Fibonacci(n)^3 + Fibonacci(n)*Lucas(n)^2)/4 (Ferns, 1967). - Amiram Eldar, Feb 06 2022
a(n) = 2*i^(n-1)*S(n-1,-4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(-1, x) = 0. From the simplified trisection formula. - Gary Detlefs and Wolfdieter Lang, Mar 04 2023
E.g.f.: 2*exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Stefano Spezia, Jun 03 2024
a(n) = 2*F(n) + 3*Sum_{k=0..n-1} F(3*k)*F(n-k). - Yomna Bakr and Greg Dresden, Jun 10 2024

A005585 5-dimensional pyramidal numbers: a(n) = n*(n+1)*(n+2)*(n+3)*(2n+3)/5!.

Original entry on oeis.org

1, 7, 27, 77, 182, 378, 714, 1254, 2079, 3289, 5005, 7371, 10556, 14756, 20196, 27132, 35853, 46683, 59983, 76153, 95634, 118910, 146510, 179010, 217035, 261261, 312417, 371287, 438712, 515592, 602888, 701624, 812889, 937839, 1077699, 1233765, 1407406
Offset: 1

Views

Author

Keywords

Comments

Convolution of triangular numbers (A000217) and squares (A000290) (n>=1). - Graeme McRae, Jun 07 2006
p^k divides a(p^k-3), a(p^k-2), a(p^k-1) and a(p^k) for prime p > 5 and integer k > 0. p^k divides a((p^k-3)/2) for prime p > 5 and integer k > 0. - Alexander Adamchuk, May 08 2007
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-5) is the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
5-dimensional square numbers, fourth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+4, i+4)*b(i), where b(i)=[1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Antidiagonal sums of the convolution array A213550. - Clark Kimberling, Jun 17 2012
Binomial transform of (1, 6, 14, 16, 9, 2, 0, 0, 0, ...). - Gary W. Adamson, Jul 28 2015
2*a(n) is number of ways to place 4 queens on an (n+3) X (n+3) chessboard so that they diagonally attack each other exactly 6 times. The maximal possible attack number, p=binomial(k,2)=6 for k=4 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015
While adjusting for offsets, add A000389 to find the next in series A000389, A005585, A051836, A034263, A027800, A051843, A051877, A051878, A051879, A051880, A056118, A271567. (See Bruno Berselli's comments in A271567.) - Bruce J. Nicholson, Jun 21 2018
Coefficients in the terminating series identity 1 - 7*n/(n + 6) + 27*n*(n - 1)/((n + 6)*(n + 7)) - 77*n*(n - 1)*(n - 2)/((n + 6)*(n + 7)*(n + 8)) + ... = 0 for n = 1,2,3,.... Cf. A002415 and A040977. - Peter Bala, Feb 18 2019

Examples

			G.f. = x + 7*x^2 + 27*x^3 + 77*x^4 + 182*x^5 + 378*x^6 + 714*x^7 + 1254*x^8 + ... - _Michael Somos_, Jun 24 2018
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 797.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = ((-1)^(n+1))*A053120(2*n+3, 5)/16, (1/16 of sixth unsigned column of Chebyshev T-triangle, zeros omitted).
Partial sums of A002415.
Cf. A006542, A040977, A047819, A111125 (third column).
Cf. a(n) = ((-1)^(n+1))*A084960(n+1, 2)/16 (compare with the first line). - Wolfdieter Lang, Aug 04 2014

Programs

  • Magma
    I:=[1, 7, 27, 77, 182, 378]; [n le 6 select I[n] else 6*Self(n-1)-15*Self(n-2)+20*Self(n-3)-15*Self(n-4)+6*Self(n-5)-Self(n-6): n in [1..40]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    [seq(binomial(n+2,6)-binomial(n,6), n=4..45)]; # Zerinvary Lajos, Jul 21 2006
    A005585:=(1+z)/(z-1)**6; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    With[{c=5!},Table[n(n+1)(n+2)(n+3)(2n+3)/c,{n,40}]] (* or *) LinearRecurrence[ {6,-15,20,-15,6,-1},{1,7,27,77,182,378},40] (* Harvey P. Dale, Oct 04 2011 *)
    CoefficientList[Series[(1 + x) / (1 - x)^6, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
  • PARI
    a(n)=binomial(n+3,4)*(2*n+3)/5 \\ Charles R Greathouse IV, Jul 28 2015

Formula

G.f.: x*(1+x)/(1-x)^6.
a(n) = 2*C(n+4, 5) - C(n+3, 4). - Paul Barry, Mar 04 2003
a(n) = C(n+3, 5) + C(n+4, 5). - Paul Barry, Mar 17 2003
a(n) = C(n+2, 6) - C(n, 6), n >= 4. - Zerinvary Lajos, Jul 21 2006
a(n) = Sum_{k=1..n} T(k)*T(k+1)/3, where T(n) = n(n+1)/2 is a triangular number. - Alexander Adamchuk, May 08 2007
a(n-1) = (1/4)*Sum_{1 <= x_1, x_2 <= n} |x_1*x_2*det V(x_1,x_2)| = (1/4)*Sum_{1 <= i,j <= n} i*j*|i-j|, where V(x_1,x_2) is the Vandermonde matrix of order 2. First differences of A040977. - Peter Bala, Sep 21 2007
a(n) = C(n+4,4) + 2*C(n+4,5). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6), a(1)=1, a(2)=7, a(3)=27, a(4)=77, a(5)=182, a(6)=378. - Harvey P. Dale, Oct 04 2011
a(n) = (1/6)*Sum_{i=1..n+1} (i*Sum_{k=1..i} (i-1)*k). - Wesley Ivan Hurt, Nov 19 2014
E.g.f.: x*(2*x^4 + 35*x^3 + 180*x^2 + 300*x + 120)*exp(x)/120. - Robert Israel, Nov 19 2014
a(n) = A000389(n+3) + A000389(n+4). - Bruce J. Nicholson, Jun 21 2018
a(n) = -a(-3-n) for all n in Z. - Michael Somos, Jun 24 2018
From Amiram Eldar, Jun 28 2020: (Start)
Sum_{n>=1} 1/a(n) = 40*(16*log(2) - 11)/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 20*(8*Pi - 25)/3. (End)
a(n) = A004302(n+1) - A207361(n+1). - J. M. Bergot, May 20 2022
a(n) = Sum_{i=0..n+1} Sum_{j=i..n+1} i*j*(j-i)/2. - Darío Clavijo, Oct 11 2023
a(n) = (A000538(n+1) - A000330(n+1))/12. - Yasser Arath Chavez Reyes, Feb 21 2024
Showing 1-10 of 42 results. Next