cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 345 results. Next

A029653 Numbers in (2,1)-Pascal triangle (by row).

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 9, 5, 1, 2, 9, 16, 14, 6, 1, 2, 11, 25, 30, 20, 7, 1, 2, 13, 36, 55, 50, 27, 8, 1, 2, 15, 49, 91, 105, 77, 35, 9, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 2, 21, 100, 285
Offset: 0

Views

Author

Keywords

Comments

Reverse of A029635. Row sums are A003945. Diagonal sums are Fibonacci(n+2) = Sum_{k=0..floor(n/2)} (2n-3k)*C(n-k,n-2k)/(n-k). - Paul Barry, Jan 30 2005
Riordan array ((1+x)/(1-x), x/(1-x)). The signed triangle (-1)^(n-k)T(n,k) or ((1-x)/(1+x), x/(1+x)) is the inverse of A055248. Row sums are A003945. Diagonal sums are F(n+2). - Paul Barry, Feb 03 2005
Row sums = A003945: (1, 3, 6, 12, 24, 48, 96, ...) = (1, 3, 7, 15, 31, 63, 127, ...) - (0, 0, 1, 3, 7, 15, 31, ...); where (1, 3, 7, 15, ...) = A000225. - Gary W. Adamson, Apr 22 2007
Triangle T(n,k), read by rows, given by (2,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 17 2011
A029653 is jointly generated with A208510 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=u(n-1,x)+x*v(n-1,x)+1. See the Mathematica section. - Clark Kimberling, Feb 28 2012
For a closed-form formula for arbitrary left and right borders of Pascal like triangle, see A228196. - Boris Putievskiy, Aug 18 2013
For a closed-form formula for generalized Pascal's triangle, see A228576. - Boris Putievskiy, Sep 04 2013
The n-th row polynomial is (2 + x)*(1 + x)^(n-1) for n >= 1. More generally, the n-th row polynomial of the Riordan array ( (1-a*x)/(1-b*x), x/(1-b*x) ) is (b - a + x)*(b + x)^(n-1) for n >= 1. - Peter Bala, Feb 25 2018

Examples

			The triangle T(n,k) begins:
n\k 0  1  2   3   4   5   6   7  8  9 10 ...
0:  1
1:  2  1
2:  2  3  1
3:  2  5  4   1
4:  2  7  9   5   1
5:  2  9 16  14   6   1
6:  2 11 25  30  20   7   1
7:  2 13 36  55  50  27   8   1
8:  2 15 49  91 105  77  35   9  1
9:  2 17 64 140 196 182 112  44 10  1
10: 2 19 81 204 336 378 294 156 54 11  1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1        \/1         \/1        \      /1        \
|2 1      ||0 1       ||0 1      |      |2 1      |
|2 1 1    ||0 2 1     ||0 0 1    |... = |2 3 1    |
|2 1 1 1  ||0 2 1 1   ||0 0 2 1  |      |2 5 4 1  |
|2 1 1 1 1||0 2 1 1 1 ||0 0 2 1 1|      |2 7 9 5 1|
|...      ||...       ||...      |      |...      |
- _Peter Bala_, Dec 27 2014
		

References

  • Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.

Crossrefs

(d, 1) Pascal triangles: A007318(d=1), A093560(3), A093561(4), A093562(5), A093563(6), A093564(7), A093565(8), A093644(9), A093645(10).

Programs

  • Haskell
    a029653 n k = a029653_tabl !! n !! k
    a029653_row n = a029653_tabl !! n
    a029653_tabl = [1] : iterate
                   (\xs -> zipWith (+) ([0] ++ xs) (xs ++ [0])) [2, 1]
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Maple
    A029653 :=  proc(n,k)
    if n = 0 then
      1;
    else
      binomial(n-1, k)+binomial(n, k)
    fi
    end proc: # R. J. Mathar, Jun 30 2013
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208510 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A029653 *)
    (* Clark Kimberling, Feb 28 2012 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
    
  • Python
    from math import comb, isqrt
    def A029653(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*((r<<1)-a)//r if n else 1 # Chai Wah Wu, Nov 12 2024

Formula

T(n, k) = C(n-2, k-1) + C(n-2, k) + C(n-1, k-1) + C(n-1, k) except for n=0.
G.f.: (1 + x + y + xy)/(1 - y - xy). - Ralf Stephan, May 17 2004
T(n, k) = (2n-k)*binomial(n, n-k)/n, n, k > 0. - Paul Barry, Jan 30 2005
Sum_{k=0..n} T(n, k)*x^k gives A003945-A003954 for x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10. - Philippe Deléham, Jul 10 2005
T(n, k) = C(n-1, k) + C(n, k). - Philippe Deléham, Jul 10 2005
Equals A097806 * A007318, i.e., the pairwise operator * Pascal's Triangle as infinite lower triangular matrices. - Gary W. Adamson, Apr 22 2007
From Peter Bala, Dec 27 2014: (Start)
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(2 + 5*x + 4*x^2/2! + x^3/3!) = 2 + 7*x + 16*x^2/2! + 30*x^3/3! + 50*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ).
Let M denote the lower unit triangular array with 1's on the main diagonal and 1's everywhere else below the main diagonal except for the first column which consists of the sequence [1,2,2,2,...]. For k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Extensions

More terms from James Sellers

A094441 Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Triangle of coefficients of polynomials u(n,x) jointly generated with A209415; see the Formula section.
Column 1: Fibonacci numbers: F(n)=A000045(n)
Column 2: n*F(n)
Row sums: odd-indexed Fibonacci numbers
Alternating row sums: signed Fibonacci numbers
Coefficient of x^n in u(n,x): 1
Coefficient of x^(n-1) in u(n,x): n
Coefficient of x^(n-2) in u(n,x): n(n+1)
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 27 2012
Row n shows the coefficients of the numerator of the n-th derivative of (1/n!)*(x+1)/(1-x-x^2); see the Mathematica program. - Clark Kimberling, Oct 22 2019

Examples

			First five rows:
  1;
  1,  1;
  2,  2,  1;
  3,  6,  3,  1;
  5, 12, 12,  4,  1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
  1;
  0,  1;
  0,  1,  1;
  0,  2,  2,  1;
  0,  3,  6,  3,  1;
  0,  5, 12, 12,  4,  1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A094441 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A094442 *)
    (* Next program outputs polynomials having coefficients T(n,k) *)
    g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
    (* Second program *)
    Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+1);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

Sum_{k=0..n} T(n,k)*x^k = A039834(n-1), A000045(n+1), A001519(n+1), A081567(n), A081568(n), A081569(n), A081570(n), A081571(n) for x = -1, 0, 1, 2, 3, 4, 5, 6 respectively. - Philippe Deléham, Dec 14 2009
From Clark Kimberling, Mar 09 2012: (Start)
A094441 shows the coefficient of the polynomials u(n,x) which are jointly generated with polynomials v(n,x) by these rules:
u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
(End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 27 2012
G.f. (1-x*y)/(1 - 2*x*y - x - x^2 + x^2*y + x^2*y^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n-1). (End)

A110813 A triangle of pyramidal numbers.

Original entry on oeis.org

1, 3, 1, 5, 4, 1, 7, 9, 5, 1, 9, 16, 14, 6, 1, 11, 25, 30, 20, 7, 1, 13, 36, 55, 50, 27, 8, 1, 15, 49, 91, 105, 77, 35, 9, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 23, 121, 385, 825
Offset: 0

Views

Author

Paul Barry, Aug 05 2005

Keywords

Comments

Triangle A029653 less first column. In general, the product (1/(1-x),x/(1-x))*(1+m*x,x) yields the Riordan array ((1+(m-1)x)/(1-x)^2,x/(1-x)) with general term T(n,k)=(m*n-(m-1)*k+1)*C(n+1,k+1)/(n+1). This is the reversal of the (1,m)-Pascal triangle, less its first column. - Paul Barry, Mar 01 2006
The column sequences give, for k=0..10: A005408 (odd numbers), A000290 (squares), A000330, A002415, A005585, A040977, A050486, A053347, A054333, A054334, A057788.
Linked to Chebyshev polynomials by the fact that this triangle with interpolated zeros in the rows and columns is a scaled version of A053120.
Row sums are A033484. Diagonal sums are A001911(n+1) or F(n+4)-2. Factors as (1/(1-x),x/(1-x))*(1+2x,x). Inverse is A110814 or (-1)^(n-k)*A104709.
This triangle is a subtriangle of the [2,1] Pascal triangle A029653 (omit there the first column).
Subtriangle of triangles in A029653, A131084, A208510. - Philippe Deléham, Mar 02 2012
This is the iterated partial sums triangle of A005408 (odd numbers). Such iterated partial sums of arithmetic progression sequences have been considered by Narayana Pandit (see the Mar 20 2015 comment on A000580 where the MacTutor History of Mathematics archive link and the Gottwald et al. reference, p. 338, are given). - Wolfdieter Lang, Mar 23 2015

Examples

			The number triangle T(n, k) begins
n\k  0   1   2   3    4    5    6   7   8  9 10 11
0:   1
1:   3   1
2:   5   4   1
3:   7   9   5   1
4:   9  16  14   6    1
5:  11  25  30  20    7    1
6:  13  36  55  50   27    8    1
7:  15  49  91 105   77   35    9   1
8:  17  64 140 196  182  112   44  10   1
9:  19  81 204 336  378  294  156  54  11  1
10: 21 100 285 540  714  672  450 210  65 12  1
11: 23 121 385 825 1254 1386 1122 660 275 77 13  1
... reformatted by _Wolfdieter Lang_, Mar 23 2015
As a number square S(n, k) = T(n+k, k), rows begin
  1,   1,   1,   1,   1,   1, ...
  3,   4,   5,   6,   7,   8, ...
  5,   9,  14,  20,  27,  35, ...
  7,  16,  30,  50,  77, 112, ...
  9,  25,  55, 105, 182, 294, ...
		

Crossrefs

Programs

  • Mathematica
    Table[2*Binomial[n + 1, k + 1] - Binomial[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 19 2017 *)
  • PARI
    for(n=0,10, for(k=0,n, print1(2*binomial(n+1, k+1) - binomial(n,k), ", "))) \\ G. C. Greubel, Oct 19 2017

Formula

Number triangle T(n, k) = C(n, k)*(2n-k+1)/(k+1) = 2*C(n+1, k+1) - C(n, k); Riordan array ((1+x)/(1-x)^2, x/(1-x)); As a number square read by antidiagonals, T(n, k)=C(n+k, k)(2n+k+1)/(k+1).
Equals A007318 * an infinite bidiagonal matrix with 1's in the main diagonal and 2's in the subdiagonal. - Gary W. Adamson, Dec 01 2007
Binomial transform of an infinite lower triangular matrix with all 1's in the main diagonal, all 2's in the subdiagonal and the rest zeros. - Gary W. Adamson, Dec 12 2007
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0)=T(1,1)=1, T(1,0)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 30 2013
exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(7 + 9*x + 5*x^2/2! + x^3/3!) = 7 + 16*x + 30*x^2/2! + 50*x^3/3! + 77*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). - Peter Bala, Dec 21 2014
T(n, k) = ps(1, 2; k, n-k) with ps(a, d; k, n) = sum(ps(a, d; k-1, j), j=0..n) and input ps(a, d; 0, j) = a + d*j. See the iterated partial sums comment from Mar 23 2015 above. - Wolfdieter Lang, Mar 23 2015
From Franck Maminirina Ramaharo, May 21 2018: (Start)
T(n,k) = coefficients in the expansion of ((x + 2)*(x + 1)^n - 2)/x.
T(n,k) = A135278(n,k) + A135278(n-1,k).
T(n,k) = A097207(n,n-k).
G.f.: (y + 1)/((y - 1)*(x*y + y - 1)).
E.g.f.: ((x + 2)*exp(x*y + y) - 2*exp(y))/x.
(End)

A094442 Triangular array T(n,k) = Fibonacci(n+2-k)*C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 9, 6, 1, 8, 20, 18, 8, 1, 13, 40, 50, 30, 10, 1, 21, 78, 120, 100, 45, 12, 1, 34, 147, 273, 280, 175, 63, 14, 1, 55, 272, 588, 728, 560, 280, 84, 16, 1, 89, 495, 1224, 1764, 1638, 1008, 420, 108, 18, 1, 144, 890, 2475, 4080, 4410, 3276, 1680, 600, 135, 20, 1
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Triangle of coefficients of polynomials v(n,x) jointly generated with A094441; see the Formula section.
Column 1: Fibonacci numbers, A000045
Row sums: even-indexed Fibonacci numbers
Alternating row sum: signed Fibonacci numbers
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012

Examples

			First five rows:
  1;
  2,  1;
  3,  4,  1;
  5,  9,  6, 1;
  8, 20, 18, 8, 1;
First three polynomials v(n,x): 1, 2 + x, 3 + 4x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, ...) begins:
  1;
  0, 1;
  0, 2,  1;
  0, 3,  4,  1;
  0, 5,  9,  6, 1;
  0, 8, 20, 18, 8, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+2) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A094441 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A094442 *)
    (* Second program *)
    Table[Fibonacci[n-k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+2);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

Let u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + (x+1)*v(n-1, x), where u(1,x)=1, v(1,x)=1 then the coefficients of the polynomials of v(n,x) produce this sequence.
T(n,k) = T(n-1, k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Apr 02 2012
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2)
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = (-1)^n * Fibonacci(n-2). (End)

A210034 Triangle of coefficients of polynomials v(n,x) jointly generated with A210033; see the Formula section.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 6, 2, 1, 20, 20, 13, 7, 2, 1, 33, 38, 29, 16, 8, 2, 1, 54, 71, 60, 39, 19, 9, 2, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 376, 744, 894, 806
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
From Gus Wiseman, Jun 29 2025: (Start)
This appears to be the number of subsets of {1..n} with k>0 maximal anti-runs (sequences of consecutive elements increasing by more than 1). For example, the subset {1,2,4,5} has maximal anti-runs ((1),(2,4),(5)) so is counted under T(5,3). Row n = 5 counts the following:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{2} {2,3} {2,3,4} {2,3,4,5}
{3} {3,4} {3,4,5}
{4} {4,5} {1,2,3,5}
{5} {1,2,4} {1,2,4,5}
{1,3} {1,2,5} {1,3,4,5}
{1,4} {1,3,4}
{1,5} {1,4,5}
{2,4} {2,3,5}
{2,5} {2,4,5}
{3,5}
{1,3,5}
For runs instead of anti-runs we have A034839, with n A202064. For reversed partitions instead of subsets we have A268193. (End)

Examples

			First five rows:
  1
  2    1
  4    2    1
  7    5    2   1
  12   10   6   2   1
First three polynomials v(n,x): 1, 2 + x, 4 + 2*x + x^2.
		

Crossrefs

Column k = 1 is A000071.
Row sums are A000225.
Column k = 2 is A001629.
Column k = 3 is A055243.
The version including k = 0 is A384893.
A034839 counts subsets by number of maximal runs, see also A202023, A202064.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210033 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210034 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A208342 Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414
Offset: 1

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

Coefficient of x^(n-1): A000045(n) (Fibonacci numbers).
n-th row sum: 2^(n-1).
Mirror image of triangle in A053538. - Philippe Deléham, Mar 05 2012
Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012

Examples

			First five rows:
  1
  1, 1
  1, 1, 2
  1, 1, 3, 3
  1, 1, 4, 5, 5
First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4.
(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
1
1, 0
1, 1, 0
1, 1, 2,  0
1, 1, 3,  3,  0
1, 1, 4,  5,  5,  0
1, 1, 5,  7, 10,  8,  0
1, 1, 6,  9, 16, 18, 13,  0
1, 1, 7, 11, 23, 31, 33, 21, 0
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208342 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208343 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x) = 1, v(1,x) = 1.
T(n,k) = A208747(n,k)/2^k. - Philippe Deléham, Mar 05 2012
From Philippe Deléham, Mar 12 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
O.g.f.: 1/(1 - z - x*z(1 - z + x*z)) = 1 + (1 + x)*z + (1 + x + 2*x^2)*z^2 + (1 + x + 3*x + 3*x^2)*z^3 + .... - Peter Bala, Dec 31 2015
u(n,x) = Sum_{j=1..floor((n+1)/2)} (-1)^(j-1)*binomial(n-j,j-1)*(x*(1-x))^(j-1)* (1+x)^(n+1-2*j) for n>=1. - Werner Schulte, Mar 07 2017
T(n,k) = Sum_{j=0..floor((k-1)/2)} binomial(k-1-j,j)*binomial(n-k+j,j) for k,n>0 and k<=n (conjectured). - Werner Schulte, Mar 07 2017

A210554 Triangle of coefficients of polynomials v(n,x) jointly generated with A208341; see the Formula section.

Original entry on oeis.org

1, 2, 2, 3, 5, 4, 4, 9, 12, 8, 5, 14, 25, 28, 16, 6, 20, 44, 66, 64, 32, 7, 27, 70, 129, 168, 144, 64, 8, 35, 104, 225, 360, 416, 320, 128, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512
Offset: 1

Views

Author

Clark Kimberling, Mar 22 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Also the number of multisets of size k that fit within some normal multiset of size n. A multiset is normal if it spans an initial interval of positive integers. - Andrew Howroyd, Sep 18 2018

Examples

			Triangle begins:
  1;
  2,  2;
  3,  5,   4;
  4,  9,  12,   8;
  5, 14,  25,  28,  16;
  6, 20,  44,  66,  64,  32;
  7, 27,  70, 129, 168, 144, 64;
  ...
First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2.
The T(3, 1) = 3 multisets: (1), (2), (3).
The T(3, 2) = 5 multisets: (11), (12), (13), (22), (23).
The T(3, 3) = 4 multisets: (111), (112), (122), (123).
		

Crossrefs

Row sums are A027941.

Programs

  • Maple
    T := (n,k) -> simplify((n + 1 - k)*hypergeom([1 - k, -k + n + 2], [2], -1)):
    seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 18 2018
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208341 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A210554 *)
  • PARI
    T(n,k)={sum(i=1, k, binomial(k-1, i-1)*binomial(n-k+i, i))} \\ Andrew Howroyd, Sep 18 2018

Formula

u(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = Sum_{i=1..k} binomial(k-1, i-1)*binomial(n-k+i, i). - Andrew Howroyd, Sep 18 2018
T(n,k) = (n - k + 1)*hypergeom([1 - k, n - k + 2], [2], -1). - Peter Luschny, Sep 18 2018

Extensions

Example corrected by Philippe Deléham, Mar 23 2012

A209415 Triangle of coefficients of polynomials u(n,x) jointly generated with A209416; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 4, 6, 1, 1, 6, 11, 10, 1, 1, 7, 21, 25, 15, 1, 1, 9, 30, 57, 50, 21, 1, 1, 10, 45, 99, 133, 91, 28, 1, 1, 12, 58, 168, 275, 280, 154, 36, 1, 1, 13, 78, 250, 523, 675, 546, 246, 45, 1, 1, 15, 95, 370, 885, 1433, 1509, 1002, 375, 55, 1, 1, 16, 120, 505, 1435, 2718, 3564, 3135, 1749, 550, 66, 1
Offset: 1

Views

Author

Clark Kimberling, Mar 09 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, 1, -2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012
Up to reflection at the vertical axis, the triangle of numbers given here coincides with the triangle given in A208334, i.e., the numbers are the same just read row-wise in the opposite direction. - Christine Bessenrodt, Jul 21 2012

Examples

			First five rows:
  1;
  1,  1;
  1,  3,  1;
  1,  4,  6,  1;
  1,  6, 11, 10,  1;
First three polynomials v(n,x): 1, 1 + x, 1 + 3x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(1, 0, 1, -2, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, ...) begins:
  1;
  1,   0;
  1,   1,   0;
  1,   3,   1,   0;
  1,   4,   6,   1,   0;
  1,   6,  11,  10,   1,   0;
  1,   7,  21,  25,  15,   1,   0;
  1,   9,  30,  57,  50,  21,   1,   0;
  1,  10,  45,  99, 133,  91,  28,   1,   0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A209415 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A209416 *)
    CoefficientList[CoefficientList[Series[(1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)

Formula

u(n,x) = x*u(n-1,x) + v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 02 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2).
T(n,k) = 2*T(n-1,k-1) + T(n-2,k) + T(n-2,k-1) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)

A209561 Triangle of coefficients of polynomials u(n,x) jointly generated with A209562; see the Formula section.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 7, 7, 4, 1, 5, 11, 14, 11, 5, 1, 6, 16, 25, 25, 16, 6, 1, 7, 22, 41, 50, 41, 22, 7, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 11, 56, 175, 375, 582, 672
Offset: 1

Views

Author

Clark Kimberling, Mar 10 2012

Keywords

Comments

Alternating row sums: 1,0,1,1,1,1,1,1,1,1,1,1,1,1,...
For a discussion and guide to related arrays, see A208510.

Examples

			First five rows:
1
1...1
2...2...1
3...4...3...1
4...7...7...4...1
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
		

Crossrefs

Cf. A083329 (row sums), A097613 (central terms).

Programs

  • Haskell
    a209561 n k = a209561_tabl !! (n-1) !! (k-1)
    a209561_row n = a209561_tabl !! (n-1)
    a209561_tabl = [1] : iterate
                   (\row -> zipWith (+) ([1] ++ row) (row ++ [0])) [1,1]
    -- Reinhard Zumkeller, Dec 26 2012
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A209561 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A209562 *)

Formula

u(n,x)=x*u(n-1,x)+v(n-1,x),
v(n,x)=x*u(n-1,x)+v(n-1,x) +1,
where u(1,x)=1, v(1,x)=1.
T(n,n) = 1; T(n,k) = A051597(n-2,k-1), 1 <= k < n. - Reinhard Zumkeller, Dec 26 2012

A208904 Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.

Original entry on oeis.org

1, 3, 1, 5, 6, 1, 7, 19, 9, 1, 9, 44, 42, 12, 1, 11, 85, 138, 74, 15, 1, 13, 146, 363, 316, 115, 18, 1, 15, 231, 819, 1059, 605, 165, 21, 1, 17, 344, 1652, 2984, 2470, 1032, 224, 24, 1, 19, 489, 3060, 7380, 8378, 4974, 1624, 292, 27, 1, 21, 670, 5301, 16488
Offset: 1

Views

Author

Clark Kimberling, Mar 03 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Riordan array ((1+x)/(1-x)^2, x(1+x)/(1-x)^2) (follows from Kruchinin formula). - Ralf Stephan, Jan 02 2014
From Peter Bala, Jul 21 2014: (Start)
Let M denote the lower unit triangular array A099375 and for k = 0,1,2,... define M(k) to be the lower unit triangular block array
/I_k 0\
\ 0 M/
having the k x k identity matrix I_k as the upper left block; in particular, M(0) = M. Then the present triangle equals the infinite matrix product M(0)*M(1)*M(2)*... (which is clearly well-defined). See the Example section. (End)

Examples

			First five rows:
1
3...1
5...6....1
7...19...9....1
9...44...42...12...1
First five polynomials v(n,x):
1
3 + x
5 + 6x + x^2
7 + 19x + 9x^2 + x^3
9 + 44x + 42x^2 + 12x^3 + x^4
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/1        \/1        \/1        \      /1            \
|3 1      ||0 1      ||0 1      |      |3  1         |
|5 3 1    ||0 3 1    ||0 0 1    |... = |5  6  1      |
|7 5 3 1  ||0 5 3 1  ||0 0 3 1  |      |7 19  9  1   |
|9 7 5 3 1||0 7 5 3 1||0 0 5 3 1|      |9 44 42 12 1 |
|...      ||...      ||...      |      |...
(End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208660 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208904 *)

Formula

u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
From Vladimir Kruchinin, Mar 11 2013: (Start)
T(n,k) = sum(i=0..n, binomial(i+k-1,2*k-1)*binomial(k,n-i))
((x+x^2)/(1-x)^2)^k = sum(n>=k, T(n,k)*x^n).
T(n,2)=A005900(n).
T(2*n-1,n) / n = A003169(n).
T(2*n,n) = A156894(n), n>1.
sum(k=1..n, T(n,k)) = A003946(n).
sum(k=1..n, T(n,k)*(-1)^(n+k)) = A078050(n).
n*sum(k=1..n, T(n,k)/k) = A058481(n). (End)
Recurrence: T(n+1,k+1) = sum {i = 0..n-k} (2*i + 1)*T(n-i,k). - Peter Bala, Jul 21 2014
Showing 1-10 of 345 results. Next