A029653
Numbers in (2,1)-Pascal triangle (by row).
Original entry on oeis.org
1, 2, 1, 2, 3, 1, 2, 5, 4, 1, 2, 7, 9, 5, 1, 2, 9, 16, 14, 6, 1, 2, 11, 25, 30, 20, 7, 1, 2, 13, 36, 55, 50, 27, 8, 1, 2, 15, 49, 91, 105, 77, 35, 9, 1, 2, 17, 64, 140, 196, 182, 112, 44, 10, 1, 2, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 2, 21, 100, 285
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 2 1
2: 2 3 1
3: 2 5 4 1
4: 2 7 9 5 1
5: 2 9 16 14 6 1
6: 2 11 25 30 20 7 1
7: 2 13 36 55 50 27 8 1
8: 2 15 49 91 105 77 35 9 1
9: 2 17 64 140 196 182 112 44 10 1
10: 2 19 81 204 336 378 294 156 54 11 1
... Reformatted. - _Wolfdieter Lang_, Jan 09 2015
With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|2 1 ||0 1 ||0 1 | |2 1 |
|2 1 1 ||0 2 1 ||0 0 1 |... = |2 3 1 |
|2 1 1 1 ||0 2 1 1 ||0 0 2 1 | |2 5 4 1 |
|2 1 1 1 1||0 2 1 1 1 ||0 0 2 1 1| |2 7 9 5 1|
|... ||... ||... | |... |
- _Peter Bala_, Dec 27 2014
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- Mohammad K. Azarian, Identities Involving Lucas or Fibonacci and Lucas Numbers as Binomial Sums, International Journal of Contemporary Mathematical Sciences, Vol. 7, No. 45, 2012, pp. 2221-2227.
- Paul Barry, A Note on a Family of Generalized Pascal Matrices Defined by Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.5.4.
- Hacene Belbachir and Athmane Benmezai, Expansion of Fibonacci and Lucas Polynomials: An Answer to Prodinger's Question, Journal of Integer Sequences, Vol. 15 (2012), #12.7.6.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 39.
- H. Hosoya, Pascal's triangle, non-adjacent numbers and D-dimensional atomic orbitals, J. Math. Chemistry, vol. 23, 1998, 169-178.
- M. Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 8.
- Mark C. Wilson, Asymptotics for generalized Riordan arrays. International Conference on Analysis of Algorithms DMTCS proc. AD. Vol. 323. 2005.
-
a029653 n k = a029653_tabl !! n !! k
a029653_row n = a029653_tabl !! n
a029653_tabl = [1] : iterate
(\xs -> zipWith (+) ([0] ++ xs) (xs ++ [0])) [2, 1]
-- Reinhard Zumkeller, Dec 16 2013
-
A029653 := proc(n,k)
if n = 0 then
1;
else
binomial(n-1, k)+binomial(n, k)
fi
end proc: # R. J. Mathar, Jun 30 2013
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208510 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A029653 *)
(* Clark Kimberling, Feb 28 2012 *)
-
from sympy import Poly
from sympy.abc import x
def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
def a(n): return Poly(v(n, x), x).all_coeffs()[::-1]
for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017
-
from math import comb, isqrt
def A029653(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),a:=n-comb(r+1,2))*((r<<1)-a)//r if n else 1 # Chai Wah Wu, Nov 12 2024
A094441
Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0
First five rows:
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
5, 12, 12, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 3, 1;
0, 5, 12, 12, 4, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Next program outputs polynomials having coefficients T(n,k) *)
g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
(* Second program *)
Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+1);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A110813
A triangle of pyramidal numbers.
Original entry on oeis.org
1, 3, 1, 5, 4, 1, 7, 9, 5, 1, 9, 16, 14, 6, 1, 11, 25, 30, 20, 7, 1, 13, 36, 55, 50, 27, 8, 1, 15, 49, 91, 105, 77, 35, 9, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1, 23, 121, 385, 825
Offset: 0
The number triangle T(n, k) begins
n\k 0 1 2 3 4 5 6 7 8 9 10 11
0: 1
1: 3 1
2: 5 4 1
3: 7 9 5 1
4: 9 16 14 6 1
5: 11 25 30 20 7 1
6: 13 36 55 50 27 8 1
7: 15 49 91 105 77 35 9 1
8: 17 64 140 196 182 112 44 10 1
9: 19 81 204 336 378 294 156 54 11 1
10: 21 100 285 540 714 672 450 210 65 12 1
11: 23 121 385 825 1254 1386 1122 660 275 77 13 1
... reformatted by _Wolfdieter Lang_, Mar 23 2015
As a number square S(n, k) = T(n+k, k), rows begin
1, 1, 1, 1, 1, 1, ...
3, 4, 5, 6, 7, 8, ...
5, 9, 14, 20, 27, 35, ...
7, 16, 30, 50, 77, 112, ...
9, 25, 55, 105, 182, 294, ...
Cf.
A000290,
A000330,
A002415,
A005408,
A005585,
A029655,
A040977,
A050486,
A053347,
A054333,
A054334,
A057788.
-
Table[2*Binomial[n + 1, k + 1] - Binomial[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 19 2017 *)
-
for(n=0,10, for(k=0,n, print1(2*binomial(n+1, k+1) - binomial(n,k), ", "))) \\ G. C. Greubel, Oct 19 2017
A094442
Triangular array T(n,k) = Fibonacci(n+2-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 5, 9, 6, 1, 8, 20, 18, 8, 1, 13, 40, 50, 30, 10, 1, 21, 78, 120, 100, 45, 12, 1, 34, 147, 273, 280, 175, 63, 14, 1, 55, 272, 588, 728, 560, 280, 84, 16, 1, 89, 495, 1224, 1764, 1638, 1008, 420, 108, 18, 1, 144, 890, 2475, 4080, 4410, 3276, 1680, 600, 135, 20, 1
Offset: 0
First five rows:
1;
2, 1;
3, 4, 1;
5, 9, 6, 1;
8, 20, 18, 8, 1;
First three polynomials v(n,x): 1, 2 + x, 3 + 4x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, ...) begins:
1;
0, 1;
0, 2, 1;
0, 3, 4, 1;
0, 5, 9, 6, 1;
0, 8, 20, 18, 8, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+2) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Second program *)
Table[Fibonacci[n-k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+2);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A210034
Triangle of coefficients of polynomials v(n,x) jointly generated with A210033; see the Formula section.
Original entry on oeis.org
1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 6, 2, 1, 20, 20, 13, 7, 2, 1, 33, 38, 29, 16, 8, 2, 1, 54, 71, 60, 39, 19, 9, 2, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 376, 744, 894, 806
Offset: 1
First five rows:
1
2 1
4 2 1
7 5 2 1
12 10 6 2 1
First three polynomials v(n,x): 1, 2 + x, 4 + 2*x + x^2.
The version including k = 0 is
A384893.
A384175 counts subsets with all distinct lengths of maximal runs, complement
A384176.
A384877 gives lengths of maximal anti-runs of binary indices, firsts
A384878.
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A210033 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210034 *)
A208342
Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414
Offset: 1
First five rows:
1
1, 1
1, 1, 2
1, 1, 3, 3
1, 1, 4, 5, 5
First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4.
(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
1
1, 0
1, 1, 0
1, 1, 2, 0
1, 1, 3, 3, 0
1, 1, 4, 5, 5, 0
1, 1, 5, 7, 10, 8, 0
1, 1, 6, 9, 16, 18, 13, 0
1, 1, 7, 11, 23, 31, 33, 21, 0
-
u[1, x_] := 1; v[1, x_] := 1; z = 13;
u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208342 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208343 *)
A210554
Triangle of coefficients of polynomials v(n,x) jointly generated with A208341; see the Formula section.
Original entry on oeis.org
1, 2, 2, 3, 5, 4, 4, 9, 12, 8, 5, 14, 25, 28, 16, 6, 20, 44, 66, 64, 32, 7, 27, 70, 129, 168, 144, 64, 8, 35, 104, 225, 360, 416, 320, 128, 9, 44, 147, 363, 681, 968, 1008, 704, 256, 10, 54, 200, 553, 1182, 1970, 2528, 2400, 1536, 512
Offset: 1
Triangle begins:
1;
2, 2;
3, 5, 4;
4, 9, 12, 8;
5, 14, 25, 28, 16;
6, 20, 44, 66, 64, 32;
7, 27, 70, 129, 168, 144, 64;
...
First three polynomials v(n,x): 1, 2 + 2x , 3 + 5x + 4x^2.
The T(3, 1) = 3 multisets: (1), (2), (3).
The T(3, 2) = 5 multisets: (11), (12), (13), (22), (23).
The T(3, 3) = 4 multisets: (111), (112), (122), (123).
-
T := (n,k) -> simplify((n + 1 - k)*hypergeom([1 - k, -k + n + 2], [2], -1)):
seq(seq(T(n,k), k=1..n), n=1..10); # Peter Luschny, Sep 18 2018
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208341 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A210554 *)
-
T(n,k)={sum(i=1, k, binomial(k-1, i-1)*binomial(n-k+i, i))} \\ Andrew Howroyd, Sep 18 2018
A209415
Triangle of coefficients of polynomials u(n,x) jointly generated with A209416; see the Formula section.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 4, 6, 1, 1, 6, 11, 10, 1, 1, 7, 21, 25, 15, 1, 1, 9, 30, 57, 50, 21, 1, 1, 10, 45, 99, 133, 91, 28, 1, 1, 12, 58, 168, 275, 280, 154, 36, 1, 1, 13, 78, 250, 523, 675, 546, 246, 45, 1, 1, 15, 95, 370, 885, 1433, 1509, 1002, 375, 55, 1, 1, 16, 120, 505, 1435, 2718, 3564, 3135, 1749, 550, 66, 1
Offset: 1
First five rows:
1;
1, 1;
1, 3, 1;
1, 4, 6, 1;
1, 6, 11, 10, 1;
First three polynomials v(n,x): 1, 1 + x, 1 + 3x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(1, 0, 1, -2, 0, 0, 0, ...) DELTA (0, 1, 0, 1, 0, 0, 0, ...) begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 4, 6, 1, 0;
1, 6, 11, 10, 1, 0;
1, 7, 21, 25, 15, 1, 0;
1, 9, 30, 57, 50, 21, 1, 0;
1, 10, 45, 99, 133, 91, 28, 1, 0; (End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := (x + 1)*u[n - 1, x] + x*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209415 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209416 *)
CoefficientList[CoefficientList[Series[(1 + x - 2*y*x - 2*y*x^2 + y^2*x^2)/(1 - 2*y*x - x^2 - y*x^2 + y^2*x^2), {x,0,10}, {y,0,10}], x], y] // Flatten (* G. C. Greubel, Jan 03 2018 *)
A209561
Triangle of coefficients of polynomials u(n,x) jointly generated with A209562; see the Formula section.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 7, 7, 4, 1, 5, 11, 14, 11, 5, 1, 6, 16, 25, 25, 16, 6, 1, 7, 22, 41, 50, 41, 22, 7, 1, 8, 29, 63, 91, 91, 63, 29, 8, 1, 9, 37, 92, 154, 182, 154, 92, 37, 9, 1, 10, 46, 129, 246, 336, 336, 246, 129, 46, 10, 1, 11, 56, 175, 375, 582, 672
Offset: 1
First five rows:
1
1...1
2...2...1
3...4...3...1
4...7...7...4...1
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
-
a209561 n k = a209561_tabl !! (n-1) !! (k-1)
a209561_row n = a209561_tabl !! (n-1)
a209561_tabl = [1] : iterate
(\row -> zipWith (+) ([1] ++ row) (row ++ [0])) [1,1]
-- Reinhard Zumkeller, Dec 26 2012
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A209561 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A209562 *)
A208904
Triangle of coefficients of polynomials v(n,x) jointly generated with A208660; see the Formula section.
Original entry on oeis.org
1, 3, 1, 5, 6, 1, 7, 19, 9, 1, 9, 44, 42, 12, 1, 11, 85, 138, 74, 15, 1, 13, 146, 363, 316, 115, 18, 1, 15, 231, 819, 1059, 605, 165, 21, 1, 17, 344, 1652, 2984, 2470, 1032, 224, 24, 1, 19, 489, 3060, 7380, 8378, 4974, 1624, 292, 27, 1, 21, 670, 5301, 16488
Offset: 1
First five rows:
1
3...1
5...6....1
7...19...9....1
9...44...42...12...1
First five polynomials v(n,x):
1
3 + x
5 + 6x + x^2
7 + 19x + 9x^2 + x^3
9 + 44x + 42x^2 + 12x^3 + x^4
From _Peter Bala_, Jul 21 2014: (Start)
With the arrays M(k) as defined in the Comments section, the infinite product M(0*)M(1)*M(2)*... begins
/1 \/1 \/1 \ /1 \
|3 1 ||0 1 ||0 1 | |3 1 |
|5 3 1 ||0 3 1 ||0 0 1 |... = |5 6 1 |
|7 5 3 1 ||0 5 3 1 ||0 0 3 1 | |7 19 9 1 |
|9 7 5 3 1||0 7 5 3 1||0 0 5 3 1| |9 44 42 12 1 |
|... ||... ||... | |...
(End)
-
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x] + 1;
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A208660 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A208904 *)
Showing 1-10 of 345 results.
Comments