cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A208510 Triangle of coefficients of polynomials u(n,x) jointly generated with A029653; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 4, 1, 1, 7, 9, 5, 1, 1, 9, 16, 14, 6, 1, 1, 11, 25, 30, 20, 7, 1, 1, 13, 36, 55, 50, 27, 8, 1, 1, 15, 49, 91, 105, 77, 35, 9, 1, 1, 17, 64, 140, 196, 182, 112, 44, 10, 1, 1, 19, 81, 204, 336, 378, 294, 156, 54, 11, 1, 1, 21, 100, 285, 540, 714, 672, 450, 210, 65, 12, 1
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

Row sums: A083329
Alternating row sums: 1,0,-1,-1,-1,-1,-1,-1,-1,-1,...
Antidiagonal sums: A000071 (-1+Fibonacci numbers)
col 1: A000012
col 2: A005408
col 3: A000290
col 4: A000330
col 5: A002415
col 6: A005585
col 7: A040977
col 8: A050486
col 9: A053347
col 10: A054333
col 11: A054334
col 12: A057788
col 2n-1 of A208510 is column n of A208508
col 2n of A208510 is column n of A208509.
...
GENERAL DISCUSSION:
A208510 typifies arrays generated by paired recurrence equations of the following form:
u(n,x)=a(n,x)*u(n-1,x)+b(n,x)*v(n-1,x)+c(n,x)
v(n,x)=d(n,x)*u(n-1,x)+e(n,x)*v(n-1,x)+f(n,x).
...
These first-order recurrences imply separate second-order recurrences. In order to show them, the six functions a(n,x),...,f(n,x) are abbreviated as a,b,c,d,e,f.
Then, starting with initial values u(1,x)=1 and u(2,x)=a+b+c: u(n,x) = (a+e)u(n-1,x) + (bd-ae)u(n-2,x) + bf-ce+c.
With initial values v(1,x)=1 and v(2,x)=d+e+f: v(n,x) = (a+e)v(n-1,x) + (bd-ae)v(n-2,x) + cd-af+f.
...
In the guide below, the last column codes certain sequences that occur in one of these ways: row, column, edge, row sum, alternating row sum. Coding:
A: 1,-1,1,-1,1,-1,1.... A033999
B: 1,2,4,8,16,32,64,... powers of 2
C: 1,1,1,1,1,1,1,1,.... A000012
D: 2,2,2,2,2,2,2,2,.... A007395
E: 2,4,6,8,10,12,14,... even numbers
F: 1,1,2,3,5,8,13,21,.. Fibonacci numbers
N: 1,2,3,4,5,6,7,8,.... A000027
O: 1,3,5,7,9,11,13,.... odd numbers
P: 1,3,9,27,81,243,.... powers of 3
S: 1,4,9,16,25,36,49,.. squares
T: 1,3,6,10,15,21,38,.. triangular numbers
Z: 1,0,0,0,0,0,0,0,0,.. A000007
*: (eventually) periodic alternating row sums
^: has a limiting row; i.e., the polynomials "approach" a power series
This coding includes indirect and repeated occurrences; e.g. F occurs thrice at A094441: in column 1 directly as Fibonacci numbers, in row sums as odd-indexed Fibonacci numbers, and in alternating row sums as signed Fibonacci numbers.
......... a....b....c....d....e....f....code
A034839 u 1....1....0....1....x....0....CCOT
A034867 v 1....1....0....1....x....0....CEN
A210221 u 1....1....0....1....2x...0....BBFF
A210596 v 1....1....0....1....2x...0....BBFF
A105070 v 1....2x...0....1....1....0....BN
A207605 u 1....1....0....1....x+1..0....BCFFN
A106195 v 1....1....0....1....x+1..0....BCFFN
A207606 u 1....1....0....x....x+1..0....DNT
A207607 v 1....1....0....x....x+1..0....DNT
A207608 u 1....1....0....2x...x+1..0....N
A207609 v 1....1....0....2x...x+1..0....C
A207610 u 1....1....0....1....x....1....CF
A207611 v 1....1....0....1....x....1....BCF
A207612 u 1....1....0....1....2x...1....BF
A207613 v 1....1....0....1....2x...1....BF
A207614 u 1....1....0....1....x+1..1....CN
A207615 v 1....1....0....1....x+1..1....CFN
A207616 u 1....1....0....x....1....1....CE
A207617 v 1....1....0....x....1....1....CNO
A029638 u 1....1....0....x....x....1....CDNO
A029635 v 1....1....0....x....x....1....CDNOZ
A207618 u 1....1....0....x....2x...1....N
A207619 v 1....1....0....x....2x...1....CFN
A207620 u 1....1....0....x....x+1..1....DET
A207621 v 1....1....0....x....x+1..1....DNO
A207622 u 1....1....0....2x...1....1....BT
A207623 v 1....1....0....2x...1....1....BN
A207624 u 1....1....0....2x...x....1....N
A102662 v 1....1....0....2x...x....1....CO
A207625 u 1....1....0....2x...x+1..1....T
A207626 v 1....1....0....2x...x+1..1....N
A207627 u 1....1....0....2x...2x...1....BN
A207628 v 1....1....0....2x...2x...1....BCE
A207629 u 1....1....0....x+1..1....1....CET
A207630 v 1....1....0....x+1..1....1....CO
A207631 u 1....1....0....x+1..x....1....DF
A207632 v 1....1....0....x+1..x....1....DEF
A207633 u 1....1....0....x+1..2x...1....F
A207634 v 1....1....0....x+1..2x...1....F
A207635 u 1....1....0....x+1..x+1..1....DN
A207636 v 1....1....0....x+1..x+1..1....CD
A160232 u 1....x....0....1....2x...0....BCFN
A208341 v 1....x....0....1....2x...0....BCFFN
A085478 u 1....x....0....1....x+1..0....CCOFT*
A078812 v 1....x....0....1....x+1..0....CEFN*
A208342 u 1....x....0....x....x....0....CCFNO
A208343 v 1....x....0....x....x....0....BBCDFZ
A208344 u 1....x....0....x....2x...0....CCFN
A208345 v 1....x....0....x....2x...0....CFZ
A094436 u 1....x....0....x....x+1..0....CFFN
A094437 v 1....x....0....x....x+1..0....CEFF
A117919 u 1....x....0....2x...1....0....BCNT
A135837 v 1....x....0....2x...1....0....BCET
A208328 u 1....x....0....2x...x....0....CCOP
A208329 v 1....x....0....2x...x....0....DPZ
A208330 u 1....x....0....2x...x+1..0....CNPT
A208331 v 1....x....0....2x...x+1..0....CN
A208332 u 1....x....0....2x...2x...0....CCE
A208333 v 1....x....0....2x...2x...0....DZ
A208334 u 1....x....0....x+1..1....0....CCNT
A208335 v 1....x....0....x+1..1....0....CCN*
A208336 u 1....x....0....x+1..x....0....CFNT*
A208337 v 1....x....0....x+1..x....0....ACFN*
A208338 u 1....x....0....x+1..2x...0....CNP
A208339 v 1....x....0....x+1..2x...0....BCNP
A202390 u 1....x....0....x+1..x+1..0....CFPTZ*
A208340 v 1....x....0....x+1..x+1..0....FNPZ*
A208508 u 1....x....0....1....1....1....CCES
A208509 v 1....x....0....1....1....1....BCO
A208510 u 1....x....0....1....x....1....CCCNOS*
A029653 v 1....x....0....1....x....1....BCDOSZ*
A208511 u 1....x....0....1....2x...1....BCFO
A208512 v 1....x....0....1....2x...1....BDFO
A208513 u 1....x....0....1....x+1..1....CCES*
A111125 v 1....x....0....1....x+1..1....COO*
A133567 u 1....x....0....x....1....1....CCOTT
A133084 v 1....x....0....x....1....1....BBCEN
A208514 u 1....x....0....x....x....1....CEFN
A208515 v 1....x....0....x....x....1....BCDFN
A208516 u 1....x....0....x....2x...1....CNN
A208517 v 1....x....0....x....2x...1....CCN
A208518 u 1....x....0....x....x+1..1....CFNT
A208519 v 1....x....0....x....x+1..1....NFFT
A208520 u 1....x....0....2x...1....1....BCTT
A208521 v 1....x....0....2x...1....1....BEN
A208522 u 1....x....0....2x...x....1....CCN
A208523 v 1....x....0....2x...x....1....CCO
A208524 u 1....x....0....2x...x+1..1....CT*
A208525 v 1....x....0....2x...x+1..1....ACNP*
A208526 u 1....x....0....2x...2x...1....CEN
A208527 v 1....x....0....2x...2x...1....CCE
A208606 u 1....x....0....x+1..1....1....CCS
A208607 v 1....x....0....x+1..1....1....CNO
A208608 u 1....x....0....x+1..x....1....CFOT
A208609 v 1....x....0....x+1..x....1....DEN*
A208610 u 1....x....0....x+1..2x...1....CO
A208611 v 1....x....0....x+1..2x...1....DE
A208612 u 1....x....0....x+1..x+1..1....CFNS
A208613 v 1....x....0....x+1..x+1..1....CFN*
A105070 u 1....2x...0....1....1....0....BN
A207536 u 1....2x...0....1....1....0....BCT
A208751 u 1....2x...0....1....x+1..0....CDPT
A208752 v 1....2x...0....1....x+1..0....CNP
A135837 u 1....2x...0....x....1....0....BCNT
A117919 v 1....2x...0....x....1....0....BCNT
A208755 u 1....2x...0....x....x....0....BCDEP
A208756 v 1....2x...0....x....x....0....BCCOZ
A208757 u 1....2x...0....x....2x...0....CDEP
A208758 v 1....2x...0....x....2x...0....CCEPZ
A208763 u 1....2x...0....2x...x....0....CDOP
A208764 v 1....2x...0....2x...x....0....CCCP
A208765 u 1....2x...0....2x...x+1..0....CE
A208766 v 1....2x...0....2x...x+1..0....CC
A208747 u 1....2x...0....2x...2x...0....CDE
A208748 v 1....2x...0....2x...2x...0....CCZ
A208749 u 1....2x...0....x+1..1....0....BCOPT
A208750 v 1....2x...0....x+1..1....0....BCNP*
A208759 u 1....2x...0....x+1..2x....0...CE
A208760 v 1....2x...0....x+1..2x....0...BCO
A208761 u 1....2x...0....x+1..x+1...0...BCCT*
A208762 v 1....2x...0....x+1..x+1...0...BNZ*
A208753 u 1....2x...0....1....1.....1...BCS
A208754 v 1....2x...0....1....1.....1...BO
A105045 u 1....2x...0....1....2x....1...BCCOS*
A208659 v 1....2x...0....1....2x....1...BDOSZ*
A208660 u 1....2x...0....1....x+1...1...CDS
A208904 v 1....2x...0....1....x+1...1...CNO
A208905 u 1....2x...0....x....1.....1...BCT
A208906 v 1....2x...0....x....1.....1...BNN
A208907 u 1....2x...0....x....x.....1...BCN
A208756 v 1....2x...0....x....x.....1...BCCE
A208755 u 1....2x...0....x....2x....1...CEN
A208910 v 1....2x...0....x....2x....1...CCE
A208911 u 1....2x...0....x....x+1...1...BCT
A208912 v 1....2x...0....x....x+1...1...BNT
A208913 u 1....2x...0....2x...1.....1...BCT
A208914 v 1....2x...0....2x...1.....1...BEN
A208915 u 1....2x...0....2x...x.....1...CE
A208916 v 1....2x...0....2x...x.....1...CCO
A208919 u 1....2x...0....2x...x+1...1...CT
A208920 v 1....2x...0....2x...x+1...1...N
A208917 u 1....2x...0....2x...2x....1...CEN
A208918 v 1....2x...0....2x...2x....1...CCNP
A208921 u 1....2x...0....x+1..1.....1...BC
A208922 v 1....2x...0....x+1..1.....1...BON
A208923 u 1....2x...0....x+1..x.....1...BCNO
A208908 v 1....2x...0....x+1..x.....1...BDN*
A208909 u 1....2x...0....x+1..2x....1...BN
A208930 v 1....2x...0....x+1..2x....1...DN
A208931 u 1....2x...0....x+1..x+1...1...BCOS
A208932 v 1....2x...0....x+1..x+1...1...BCO*
A207537 u 1....x+1..0....1....1.....0...BCO
A207538 v 1....x+1..0....1....1.....0...BCE
A122075 u 1....x+1..0....1....x.....0...CCFN*
A037027 v 1....x+1..0....1....x.....0...CCFN*
A209125 u 1....x+1..0....1....2x....0...BCFN*
A164975 v 1....x+1..0....1....2x....0...BF
A209126 u 1....x+1..0....x....x.....0...CDFO*
A209127 v 1....x+1..0....x....x.....0...DFOZ*
A209128 u 1....x+1..0....x....2x....0...CDE*
A209129 v 1....x+1..0....x....2x....0...DEZ
A102756 u 1....x+1..0....x....x+1...0...CFNP*
A209130 v 1....x+1..0....x....x+1...0...CCFNP*
A209131 u 1....x+1..0....2x...x.....0...CDEP*
A209132 v 1....x+1..0....2x...x.....0...CNPZ*
A209133 u 1....x+1..0....2x...2x....0...CDN
A209134 v 1....x+1..0....2x...2x....0...CCN*
A209135 u 1....x+1..0....2x...x+1...0...CN*
A209136 v 1....x+1..0....2x...x+1...0...CCS*
A209137 u 1....x+1..0....x+1..x.....0...CFFP*
A209138 v 1....x+1..0....x+1..x.....0...AFFP*
A209139 u 1....x+1..0....x+1..2x....0...CF*
A209140 v 1....x+1..0....x+1..2x....0...BF
A209141 u 1....x+1..0....x+1..x+1...0...BCF*
A209142 v 1....x+1..0....x+1..x+1...0...BFZ*
A209143 u 1....x+1..0....1....1.....1...CCE*
A209144 v 1....x+1..0....1....1.....1...COO*
A209145 u 1....x+1..0....1....x.....1...CCFN*
A122075 v 1....x+1..0....1....x.....1...CCFN*
A209146 u 1....x+1..0....1....2x....1...BCF*
A209147 v 1....x+1..0....1....2x....1...BF
A209148 u 1....x+1..0....1....x+1...1...CCO*
A209149 v 1....x+1..0....1....x+1...1...CDO*
A209150 u 1....x+1..0....x....1.....1...CCNT*
A208335 v 1....x+1..0....x....1.....1...CDNN*
A209151 u 1....x+1..0....x....x.....1...CFN*
A208337 v 1....x+1..0....x....x.....1...ACFN*
A209152 u 1....x+1..0....x....2x....1...CN*
A208339 v 1....x+1..0....x....x.....1...BCN
A209153 u 1....x+1..0....x....x+1...1...CFT*
A208340 v 1....x+1..0....x....x.....1...FNZ*
A209154 u 1....x+1..0....2x...1.....1...BCT*
A209157 v 1....x+1..0....2x...1.....1...BNN
A209158 u 1....x+1..0....2x...x.....1...CN*
A209159 v 1....x+1..0....2x...x.....1...CO*
A209160 u 1....x+1..0....2x...2x....1...CN*
A209161 v 1....x+1..0....2x...2x....1...CE
A209162 u 1....x+1..0....2x...x+1...1...CT*
A209163 v 1....x+1..0....2x...x+1...1...CO*
A209164 u 1....x+1..0....x+1..1.....1...CC*
A209165 v 1....x+1..0....x+1..1.....1...CCN
A209166 u 1....x+1..0....x+1..x.....1...CFF*
A209167 v 1....x+1..0....x+1..x.....1...FF*
A209168 u 1....x+1..0....x+1..2x....1...CF*
A209169 v 1....x+1..0....x+1..2x....1...CF
A209170 u 1....x+1..0....x+1..x+1...1...CF*
A209171 v 1....x+1..0....x+1..x+1...1...CF*
A053538 u x....1....0....1....1.....0...BBCCFN
A076791 v x....1....0....1....1.....0...BBCDF
A209172 u x....1....0....1....2x....0...BCCFF
A209413 v x....1....0....1....2x....0...BCCFF
A094441 u x....1....0....1....x+1...0...CFFFN
A094442 v x....1....0....1....x+1...0...CEFFF
A054142 u x....1....0....x....x+1...0...CCFOT*
A172431 v x....1....0....x....x+1...0...CEFN*
A008288 u x....1....0....2x...1.....0...CCOO*
A035607 v x....1....0....2x...1.....0...ACDE*
A209414 u x....1....0....2x...x+1...0...CCS
A112351 v x....1....0....2x...x+1...0...CON
A209415 u x....1....0....x+1..x.....0...CCTN
A209416 v x....1....0....x+1..x.....0...ACN*
A209417 u x....1....0....x+1..2x....0...CC
A209418 v x....1....0....x+1..2x....0...BBC
A209419 u x....1....0....x+1..x+1...0...CFTZ*
A209420 v x....1....0....x+1..x+1...0...FNZ*
A209421 u x....1....0....1....1.....1...CCN
A209422 v x....1....0....1....1.....1...CD
A209555 u x....1....0....1....x.....1...CNN
A209556 v x....1....0....1....x.....1...CNN
A209557 u x....1....0....1....2x....1...BCN
A209558 v x....1....0....1....2x....1...BN
A209559 u x....1....0....1....x+1...1...CN
A209560 v x....1....0....1....x+1...1...CN
A209561 u x....1....0....x....1.....1...CCNNT*
A209562 v x....1....0....x....1.....1...CDNNT*
A209563 u x....1....0....x....x.....1...CCFT^
A209564 v x....1....0....x....x.....1...CFN^
A209565 u x....1....0....x....2x....1...CC^
A209566 v x....1....0....x....2x....1...BC^
A209567 u x....1....0....x....x+1...1...CNT*
A209568 v x....1....0....x....x+1...1...NNS*
A209569 u x....1....0....2x...1.....1...CNO*
A209570 v x....1....0....2x...1.....1...DNN*
A209571 u x....1....0....2x...x.....1...CCS^
A209572 v x....1....0....2x...x.....1...CN^
A209573 u x....1....0....2x...x+1...1...CNS
A209574 v x....1....0....2x...x+1...1...NO
A209575 u x....1....0....2x...2x....1...CC
A209576 v x....1....0....2x...2x....1...C
A209577 u x....1....0....x+1..1.....1...CNNT
A209578 v x....1....0....x+1..1.....1...CNN
A209579 u x....1....0....x+1..x.....1...CNNT
A209580 v x....1....0....x+1..x.....1...NN*
A209581 u x....1....0....x+1..2x....1...CN
A209582 v x....1....0....x+1..2x....1...BN
A209583 u x....1....0....x+1..x+1...1...CT*
A209584 v x....1....0....x+1..x+1...1...CN*
A121462 u x....x....0....x....x+1...0...BCFFNZ
A208341 v x....x....0....x....x+1...0...BCFFN
A209687 u x....x....0....2x...x+1...0...BCNZ
A208339 v x....x....0....2x...x+1...0...BCN
A115241 u x....x....0....1....1.....1...CDNZ*
A209688 v x....x....0....1....1.....1...DDN*
A209689 u x....x....0....1....x.....1...FNZ^
A209690 v x....x....0....1....x.....1...FN^
A209691 u x....x....0....1....2x....1...BCZ^
A209692 v x....x....0....1....2x....1...BCC^
A209693 u x....x....0....1....x+1...1...NNZ*
A209694 v x....x....0....1....x+1...1...CN*
A209697 u x....x....0....x....x+1...1...BNZ
A209698 v x....x....0....x....x+1...1...BNT
A209699 u x....x....0....2x...1.....1...BNNZ
A209700 v x....x....0....2x...1.....1...BDN
A209701 u x....x....0....2x...x+1...1...NZ
A209702 v x....x....0....2x...x+1...1...N
A209703 u x....x....0....x+1..1.....1...FNTZ
A209704 v x....x....0....x+1..1.....1...FNNT
A209705 u x....x....0....x+1..x+1...1...BNZ*
A209706 v x....x....0....x+1..x+1...1...BCN*
A209695 u x....x+1..0....2x...x+1...0...ACN*
A209696 v x....x+1..0....2x...x+1...0...CDN*
A209830 u x....x+1..0....x+1..2x....0...ACF
A209831 v x....x+1..0....x+1..2x....0...BCF*
A209745 u x....x+1..0....x+1..x+1...0...ABF*
A209746 v x....x+1..0....x+1..x+1...0...BFZ*
A209747 u x....x+1..0....1....1.....1...ADE*
A209748 v x....x+1..0....1....1.....1...DEO
A209749 u x....x+1..0....1....x.....1...ANN*
A209750 v x....x+1..0....1....x.....1...CNO
A209751 u x....x+1..0....1....2x....1...ABN*
A209752 v x....x+1..0....1....2x....1...BN
A209753 u x....x+1..0....1....x+1...1...AN*
A209754 v x....x+1..0....1....x+1...1...NT*
A209755 u x....x+1..0....x....1.....1...AFN
A209756 v x....x+1..0....x....1.....1...FNO*
A209759 u x....x+1..0....x....2x....1...ACF^
A209760 v x....x+1..0....x....2x....1...CF^*
A209761 u x....x+1..0....x.....x+1..1...ABNS*
A209762 v x....x+1..0....x.....x+1..1...BNS*
A209763 u x....x+1..0....2x....1....1...ABN*
A209764 v x....x+1..0....2x....1....1...BNN
A209765 u x....x+1..0....2x....x....1...ACF^*
A209766 v x....x+1..0....2x....x....1...CF^
A209767 u x....x+1..0....2x....x+1..1...AN*
A209768 v x....x+1..0....2x....x+1..1...N*
A209769 u x....x+1..0....x+1...1....1...AF*
A209770 v x....x+1..0....x+1...1....1...FN
A209771 u x....x+1..0....x+1...x....1...ABN*
A209772 v x....x+1..0....x+1...x....1...BN*
A209773 u x....x+1..0....x+1...2x...1...AF
A209774 v x....x+1..0....x+1...2x...1...FN*
A209775 u x....x+1..0....x+1...x+1..1...AB*
A209776 v x....x+1..0....x+1...x+1..1...BC*
A210033 u 1....1....1....1.....x....1...BCN
A210034 v 1....1....1....1.....x....1...BCDFN
A210035 u 1....1....1....1.....2x...1...BBF
A210036 v 1....1....1....1.....2x...1...BBFF
A210037 u 1....1....1....1.....x+1..1...BCFFN
A210038 v 1....1....1....1.....x+1..1...BCFFN
A210039 u 1....1....1....x.....1....1...BCOT
A210040 v 1....1....1....x.....1....1...BCEN
A210042 u 1....1....1....x.....x....1...BCDEOT*
A124927 v 1....1....1....x.....x....1...BCDET*
A210041 u 1....1....1....x.....2x...1...BFO
A209758 v 1....1....1....x.....2x...1...BCFO
A210187 u 1....1....1....x.....x+1..1...DTF*
A210188 v 1....1....1....x.....x+1..1...DNF*
A210189 u 1....1....1....2x....1....1...BT
A210190 v 1....1....1....2x....1....1...BN
A210191 u 1....1....1....2x....x....1...CO*
A210192 v 1....1....1....2x....x....1...CCO*
A210193 u 1....1....1....2x....x+1..1...CPT
A210194 v 1....1....1....2x....x+1..1...CN
A210195 u 1....1....1....2x....2x...1...BOPT*
A210196 v 1....1....1....2x....2x...1...BCC*
A210197 u 1....1....1....x+1...1....1...BCOT
A210198 v 1....1....1....x+1...1....1...BCEN
A210199 u 1....1....1....x+1...x....1...DFT
A210200 v 1....1....1....x+1...x....1...DFO*
A210201 u 1....1....1....x+1...2x...1...BFP
A210202 v 1....1....1....x+1...2x...1...BF
A210203 u 1....1....1....x+1...x+1..1...BDOP
A210204 v 1....1....1....x+1...x+1..1...BCDN*
A210211 u x....1....1....1.....2x...1...BCFN
A210212 v x....1....1....1.....2x...1...BFN
A210213 u x....1....1....1.....x+1..1...CFFN
A210214 v x....1....1....1.....x+1..1...CFFO
A210215 u x....1....1....x.....x....1...BCDFT^
A210216 v x....1....1....x.....x....1...BCFO^
A210217 u x....1....1....x.....2x...1...CDF^
A210218 v x....1....1....x.....2x...1...BCF^
A210219 u x....1....1....x.....x+1..1...CNSTF*
A210220 v x....1....1....x.....x+1..1...FNNT*
A104698 u x....1....1....2x......1..1...CENS*
A210220 v x....1....1....2x....x+1..1...DNNT*
A210223 u x....1....1....2x....x....1...CD^
A210224 v x....1....1....2x....x....1...CO^
A210225 u x....1....1....2x....x+1..1...CNP
A210226 v x....1....1....2x....x+1..1...NOT
A210227 u x....1....1....2x....2x...1...CDP^
A210228 v x....1....1....2x....2x...1...C^
A210229 u x....1....1....x+1...1....1...CFNN
A210230 v x....1....1....x+1...1....1...CCN
A210231 u x....1....1....x+1...x....1...CNT
A210232 v x....1....1....x+1...x....1...NN*
A210233 u x....1....1....x+1...2x...1...CNP
A210234 v x....1....1....x+1...2x...1...BN
A210235 u x....1....1....x+1...x+1..1...CCFPT*
A210236 v x....1....1....x+1...x+1..1...CFN*
A124927 u x....x....1....1.....1....1...BCDEET*
A210042 v x....1....1....x+1...x+1..1...BDEOT*
A210216 u x....x....1....1.....x....1...BCFO^
A210215 v x....x....1....1.....x....1...BCDFT^
A210549 u x....x....1....1.....2x...1...BCF^
A210550 v x....x....1....1.....2x...1...BDF^
A172431 u x....x....1....1.....x+1..1...CEFN*
A210551 v x....x....1....1.....x+1..1...CFOT*
A210552 u x....x....1....x.....1....1...BBCFNO
A210553 v x....x....1....x.....1....1...BNNFB
A208341 u x....x....1....x.....x+1..1...BCFFN
A210554 v x....x....1....x.....x+1..1...BNFFT
A210555 u x....x....1....2x....1....1...BCNN
A210556 v x....x....1....2x....1....1...BENP
A210557 u x....x....1....2x....x+1..1...CNP
A210558 v x....x....1....2x....x+1..1...N
A210559 u x....x....1....x+1...1....1...CEF
A210560 v x....x....1....x+1...1....1...OFNS
A210561 u x....x....1....x+1...x....1...BCNP^
A210562 v x....x....1....x+1...x....1...BDP*^
A210563 u x....x....1....x+1...2x...1...CFP^
A210564 v x....x....1....x+1...2x...1...DF^
A013609 u x....x....1....x+1...x+1..1...BCEPT*
A209757 v x....x....1....x+1...x+1..1...BCOS*
A209819 u x....2x...1....x+1...x....1...CFN^
A209820 v x....2x...1....x+1...x....1...DF^
A209996 u x....2x...1....x+1...2x...1...CP^
A209998 v x....2x...1....x+1...2x...1...DP^
A209999 u x....x+1..1....1.....x+1..1...FN*
A210287 v x....x+1..1....1.....x+1..1...CFT*
A210565 u x....x+1..1....x.....1....1...FNT*
A210595 v x....x+1..1....x.....1....1...FNNT
A210598 u x....x+1..1....x+1...2x...1...FN*
A210599 v x....x+1..1....x+1...2x...1...FN
A210600 u x....x+1..1....x+1...x+1..1...BF*
A210601 v x....x+1..1....x+1...x+1..1...BF*
A210597 u 2x...1....1....x+1...1....1...BF
A210601 v 2x...1....1....x+1...1....1...BFN*
A210603 u 2x...1....1....x+1...x+1..1...BF
A210738 v 2x...1....1....x+1...x+1..1...CBF*
A210739 u 2x...x....1....x+1...x....1...CF^
A210740 v 2x...x....1....x+1...x....1...DF*^
A210741 u 2x...x....1....x+1...x+1..1...BCFO
A210742 v 2x...x....1....x+1...x+1..1...CFO*
A210743 u 2x...x+1..1....x+1...1....1...F
A210744 v 2x...x+1..1....x+1...1....1...FN
A210747 u 2x...x+1..1....x+1...x+1..1...FF
A210748 v 2x...x+1..1....x+1...x+1..1...CFF*
A210749 u x+1..1....1....x+1...2x...1...BCF
A210750 v x+1..1....1....x+1...2x...1...BF
A210751 u x+1..x....1....x+1...2x...1...FNT
A210752 v x+1..x....1....x+1...2x...1...FN
A210753 u x+1..x....1....x+1...x+1..1...BNZ*
A210754 v x+1..x....1....x+1...x+1..1...BCT*
A210755 u x+1..2x...1....x+1...x+1..1...N*
A210756 v x+1..2x...1....x+1...x+1..1...CT*
A210789 u 1....x....0....x+2...x-1..0...CFFN
A210790 v 1....x....0....x+2...x-1..0...CEFF
A210791 u 1....x....0....x-1...x+2..0...CFNP
A210792 v 1....x....0....x-1...x+2..0...CF
A210793 u 1....x+1..0....x+2...x-1..0...CFNP
A210794 v 1....x+1..0....x+2...x-1..0...FPP
A210795 u 1....x....1....x+2...x-1..0...FN
A210796 v 1....x....1....x+2...x-1..0...FO
A210797 u 1....x....0....x+2...x-1..1...CF
A210798 v 1....x....0....x+2...x-1..1...F
A210799 u 1....x+1..1....x+2...x-1..0...FN
A210800 v 1....x+1..1....x+2...x-1..0...F
A210801 u 1....x+1..1....x+2...x-1..1...FN
A210802 v 1....x+1..1....x+2...x-1..1...F
A210803 u 1....x....0....x-1...x+3..0...F*
A210804 v 1....x....0....x-1...x+3..0...F*
A210805 u 1....x....0....x+2...x-1.-1...CFFN
A210806 v 1....x....0....x+2...x-1.-1...FF
A210858 u 1....x....0....x+n...x....0...CFT*
A210859 v 1....x....0....x+n...x....0...FN*
A210860 u 1....x+1..0....x+n...x....0...F
A210861 v 1....x+1..0....x+n...x....0...F*
A210862 u 1....x....1....x+n-1.x....0...FN
A210863 v 1....x....1....x+n-1.x....0...FS
A210864 u 1....x....1....x+n...x....0...FN
A210865 v 1....x....1....x+n...x....0...FT
A210866 u 1....x....0....x+n...x...-x...CFT
A210867 v 1....x....0....x+n...x...-x...FN
A210868 u 1....x....0....x+1...x-1..0...BCFN
A210869 v 1....x....0....x+1...x-1..0...BBCFNZ
A210870 u 1....x....0....x+1...x-1..1...CFFN
A210871 v 1....x....0....x+1...x-1..1...CFF
A210872 u x....1...-1....x.....x....1...BDFZ^
A210873 v x....1...-1....x.....x....1...BCFN^
A210876 u x....1....1....x.....x....x...BCCF^
A210877 v x....1....1....x.....x....x...BDFNZ^
A210878 u x....2x...0....x+1...x....1...DFZ^
A210879 v x....2x...0....x+1...x....1...FC*^
Some of these triangles have irregular row lengths, making it difficult to retrieve individual rows/columns/diagonals without actually computing the recurrence. - Georg Fischer, Sep 04 2021

Examples

			First five rows:
1
1...1
1...3...1
1...5...4...1
1...7...9...5...1
First five polynomials u(n,x):
1
1 + x
1 + 3x + x^2
1 + 5x + 4x^2 + x^3
1 + 7x + 9x^2 + 5x^3 + x^4
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208510 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A029653 *)
  • Python
    from sympy import Poly
    from sympy.abc import x
    def u(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x)
    def v(n, x): return 1 if n==1 else u(n - 1, x) + x*v(n - 1, x) + 1
    def a(n): return Poly(u(n, x), x).all_coeffs()[::-1]
    for n in range(1, 13): print(a(n)) # Indranil Ghosh, May 27 2017

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
Also, u(n,x)=(x+1)*u(n-1,x)+x for n>2, with u(n,2)=x+1.

Extensions

Corrected by Philippe Deléham, Apr 10 2012
Corrections and additions by Clark Kimberling, May 09 2012
Corrections in the overview by Georg Fischer, Sep 04 2021

A094440 Triangular array read by rows: T(n,k) = Fibonacci(n+1-k)*C(n,k-1), k = 1..n; n >= 1.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 3, 8, 6, 4, 5, 15, 20, 10, 5, 8, 30, 45, 40, 15, 6, 13, 56, 105, 105, 70, 21, 7, 21, 104, 224, 280, 210, 112, 28, 8, 34, 189, 468, 672, 630, 378, 168, 36, 9, 55, 340, 945, 1560, 1680, 1260, 630, 240, 45, 10, 89, 605, 1870, 3465, 4290, 3696, 2310, 990, 330, 55, 11
Offset: 1

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Row sums yield the even-subscripted Fibonacci numbers (A001906).
Row n shows the coefficients of the numerator of the n-th derivative of c(n)/(x^2+x-1), where c(n) = ((-1)^(n + 1))/n!; see the Mathematica program. - Clark Kimberling, Oct 22 2019

Examples

			Triangle starts:
   1;
   1,  2;
   2,  3,   3;
   3,  8,   6,   4;
   5, 15,  20,  10,  5;
   8, 30,  45,  40, 15,  6;
  13, 56, 105, 105, 70, 21, 7;
  ...
T(4,3) = F(2)*C(4,2) = 1*6 = 6.
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k-1)* Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    /* As triangle */ [[Fibonacci(n+1-k)*Binomial(n,k-1): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Aug 15 2017
    
  • Maple
    with(combinat): T:=(n,k)->binomial(n,k-1)*fibonacci(n+1-k): for n from 1 to 11 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form # Emeric Deutsch
  • Mathematica
    Table[Fibonacci[n+1-k]Binomial[n,k-1],{n,20},{k,n}]//Flatten (* Harvey P. Dale, Sep 14 2016 *)
    (* Next program outputs polynomials having coefficients T(n,k) *)
    g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[1/(1 - x - x^2), {x, n}]]]
    Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
  • PARI
    T(n,k) = binomial(n,k-1)*fibonacci(n-k+1);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k-1)*fibonacci(n-k+1) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From Peter Bala, Aug 17 2007: (Start)
With an offset of 0, the row polynomials F(n,x) = Sum_{k = 0..n} C(n,k)* Fibonacci(n-k)*x^k satisfy F(n,x)*L(n,x) = F(2*n,x), where L(n,x) = Sum_{k = 0..n} C(n,k)*Lucas(n-k)*x^k.
Other identities and formulas include:
F(n+1,x)^2 - F(n,x)*F(n+2,x) = (x^2 + x - 1)^n;
Sum_{k = 0..n} C(n,k)*F(n-k,x)*L(k,x) = (2^n)*F(n,x);
F(n,2*x) = Sum_{k = 0..n} C(n,k)*F(n-k,x)*x^k;
F(n,3*x) = Sum_{k = 0..n} C(n,k)*F(n-k,2*x)*x^k, etc.
The sequence {F(n,r)}n>=1 gives the r-th binomial transform of the Fibonacci numbers: r = 1 gives A001906, r = 2 gives A030191, r = 3 gives A099453, r = 4 gives A081574, r = 5 gives A081575.
F(n,1/phi) = (-1)^(n-1)*F(n,-phi) = sqrt(5)^(n-1) for n >= 1, where phi = (1 + sqrt(5))/2.
The polynomials F(n,-x) satisfy a Riemann hypothesis: the zeros of F(n,-x) lie on the vertical line Re x = 1/2 in the complex plane.
G.f.: t/(1 - (2*x + 1)*t + (x^2 + x - 1)*t^2) = t + (1 + 2*x)*t^2 + (2 + 3*x + 3*x^2)*t^3 + (3 + 8*x + 6*x^2 + 4*x^3)*t^4 + ... . (End)
From Peter Bala, Jun 29 2016: (Start)
Working with an offset of 0, the n-th row polynomial F(n,x) = 1/sqrt(5)*( (x + phi)^n - (x - 1/phi)^n ), where phi = (1 + sqrt(5))/2.
d/dx(F(n,x)) = n*F(n-1,x).
F(-n,x) = -F(n,x)/(x^2 + x - 1)^n.
F(n,x - 1) = (-1)^(n-1)*F(n,-x).
F(n,x) is a divisibility sequence of polynomials, that is, if n divides m then F(n,x) divides F(m,x) in the polynomial ring Z[x]. (End)
From G. C. Greubel, Oct 30 2019: (Start)
Sum_{k = 1..n} T(n,k) = Fibonacci(2*n).
Sum_{k = 1..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n). (End)
From Clark Kimberling, Oct 30 2019: (Start)
F(n,x) is a strong divisibility sequence of polynomials in Z[x]; that is,
gcd(F(x,h),F(x,k)) = F(x,gcd(h,k)) for h,k >= 1. Thus, if x is an integer, then F(n,x) is a strong divisibility sequence of integers; e.g., for x=3, we have A099453. (End)
Let p(n) denote the polynomial F(x,n). Then p(n) = k(b^n - c^n), where k = -1/sqrt(5), b = (1/2)(2x + 1 - sqrt(5)), c = (1/2)(2x + 1 + sqrt(5)), and for n >=3, p(n) = u*p(n - 1) + v*p(n - 2), where u = 1 + 2 x, v = 1 - x - x^2. - Clark Kimberling, Nov 11 2023

Extensions

Error in expansion of generating function corrected by Peter Bala, Sep 24 2008

A081567 Second binomial transform of F(n+1).

Original entry on oeis.org

1, 3, 10, 35, 125, 450, 1625, 5875, 21250, 76875, 278125, 1006250, 3640625, 13171875, 47656250, 172421875, 623828125, 2257031250, 8166015625, 29544921875, 106894531250, 386748046875, 1399267578125, 5062597656250, 18316650390625, 66270263671875, 239768066406250
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of F(2*n-1), index shifted by 1, where F is A000045. - corrected by Richard R. Forberg, Aug 12 2013
Case k=2 of family of recurrences a(n) = (2k+1)*a(n-1) - A028387(k-1)*a(n-2), a(0)=1, a(1)=k+1.
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 10 and |s(i) - s(i-1)| = 1 for i = 1, 2, ..., 2*n+1, s(0) = 3, s(2*n+1) = 4.
a(n+1) gives the number of periodic multiplex juggling sequences of length n with base state <2>. - Steve Butler, Jan 21 2008
a(n) is also the number of idempotent order-preserving partial transformations (of an n-element chain) of waist n (waist(alpha) = max(Im(alpha))). - Abdullahi Umar, Sep 14 2008
Counts all paths of length (2*n+1), n>=0, starting at the initial node on the path graph P_9, see the Maple program. - Johannes W. Meijer, May 29 2010
Given the 3 X 3 matrix M = [1,1,1; 1,1,0; 1,1,3], a(n) = term (1,1) in M^(n+1). - Gary W. Adamson, Aug 06 2010
Number of nonisomorphic graded posets with 0 and 1 of rank n+2, with exactly 2 elements of each rank level between 0 and 1. Also the number of nonisomorphic graded posets with 0 of rank n+1, with exactly 2 elements of each rank level above 0. (This is by Stanley's definition of graded, that all maximal chains have the same length.) - David Nacin, Feb 26 2012
a(n) = 3^n a(n;1/3) = Sum_{k=0..n} C(n,k) * F(k-1) * (-1)^k * 3^(n-k), which also implies the Deleham formula given below and where a(n;d), n=0,1,...,d, denote the delta-Fibonacci numbers defined in comments to A000045 (see also the papers of Witula et al.). - Roman Witula, Jul 12 2012
The limiting ratio a(n)/a(n-1) is 1 + phi^2. - Bob Selcoe, Mar 17 2014
a(n) counts closed walks on K_2 containing 3 loops on the index vertex and 2 loops on the other. Equivalently the (1,1) entry of A^n where the adjacency matrix of digraph is A=(3,1; 1,2). - David Neil McGrath, Nov 18 2014

Examples

			a(4)=125: 35*(3 + (35 mod 10 - 10 mod 3)/(10-3)) = 35*(3 + 4/7) = 125. - _Bob Selcoe_, Mar 17 2014
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, 1997, pages 96-100.

Crossrefs

a(n) = 5*A052936(n-1), n > 1.
Row sums of A114164.
Cf. A000045, A007051 (INVERTi transform), A007598, A028387, A030191, A039717, A049310, A081568 (binomial transform), A086351 (INVERT transform), A090041, A093129, A094441, A111776, A147748, A178381, A189315.

Programs

  • Magma
    I:=[1, 3]; [n le 2 select I[n] else 5*Self(n-1)-5*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 27 2012
    
  • Maple
    with(GraphTheory):G:=PathGraph(9): A:= AdjacencyMatrix(G): nmax:=23; n2:=nmax*2+2: for n from 0 to n2 do B(n):=A^n; a(n):=add(B(n)[1,k],k=1..9); od: seq(a(2*n+1),n=0..nmax); # Johannes W. Meijer, May 29 2010
  • Mathematica
    Table[MatrixPower[{{2,1},{1,3}},n][[2]][[2]],{n,0,44}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
    LinearRecurrence[{5,-5},{1,3},30] (* Vincenzo Librandi, Feb 27 2012 *)
  • PARI
    Vec((1-2*x)/(1-5*x+5*x^2)+O(x^99)) \\ Charles R Greathouse IV, Mar 18 2014
  • Python
    def a(n, adict={0:1, 1:3}):
        if n in adict:
            return adict[n]
        adict[n]=5*a(n-1) - 5*a(n-2)
        return adict[n] # David Nacin, Mar 04 2012
    

Formula

a(n) = 5*a(n-1) - 5*a(n-2) for n >= 2, with a(0) = 1 and a(1) = 3.
a(n) = (1/2 - sqrt(5)/10) * (5/2 - sqrt(5)/2)^n + (sqrt(5)/10 + 1/2) * (sqrt(5)/2 + 5/2)^n.
G.f.: (1 - 2*x)/(1 - 5*x + 5*x^2).
a(n-1) = Sum_{k=1..n} binomial(n, k)*F(k)^2. - Benoit Cloitre, Oct 26 2003
a(n) = A090041(n)/2^n. - Paul Barry, Mar 23 2004
The sequence 0, 1, 3, 10, ... with a(n) = (5/2 - sqrt(5)/2)^n/5 + (5/2 + sqrt(5)/2)^n/5 - 2(0)^n/5 is the binomial transform of F(n)^2 (A007598). - Paul Barry, Apr 27 2004
From Paul Barry, Nov 15 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n, j)*binomial(j+k, 2k);
a(n) = Sum_{k=0..n} Sum_{j=0..n} binomial(n, k+j)*binomial(k, k-j)2^(n-k-j);
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} binomial(n+k-j, n-k-j)*binomial(k, j)(-1)^j*2^(n-k-j). (End)
a(n) = A111776(n, n). - Abdullahi Umar, Sep 14 2008
a(n) = Sum_{k=0..n} A094441(n,k)*2^k. - Philippe Deléham, Dec 14 2009
a(n+1) = Sum_{k=-floor(n/5)..floor(n/5)} ((-1)^k*binomial(2*n, n+5*k)/2). -Mircea Merca, Jan 28 2012
a(n) = A030191(n) - 2*A030191(n-1). - R. J. Mathar, Jul 19 2012
G.f.: Q(0,u)/x - 1/x, where u=x/(1-2*x), Q(k,u) = 1 + u^2 + (k+2)*u - u*(k+1 + u)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 07 2013
For n>=3: a(n) = a(n-1)*(3+(a(n-1) mod a(n-2) - a(n-2) mod a(n-3))/(a(n-2) - a(n-3))). - Bob Selcoe, Mar 17 2014
a(n) = sqrt(5)^(n-1)*(3*S(n-1, sqrt(5)) - sqrt(5)*S(n-2, sqrt(5))) with Chebyshev's S-polynomials (see A049310), where S(-1, x) = 0 and S(-2, x) = -1. This is the (1,1) entry of A^n with the matrix A=(3,1;1,2). See the comment by David Neil McGrath, Nov 18 2014. - Wolfdieter Lang, Dec 04 2014
Conjecture: a(n) = 2*a(n-1) + A039717(n). - Benito van der Zander, Nov 20 2015
a(n) = A189315(n+1) / 10. - Tom Copeland, Dec 08 2015
a(n) = A093129(n) + A030191(n-1). - Gary W. Adamson, Apr 24 2023
E.g.f.: exp(5*x/2)*(5*cosh(sqrt(5)*x/2) + sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024

A094436 Triangular array T(n,k) = Fibonacci(k+1)*binomial(n,k) for k = 0..n; n >= 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 4, 12, 12, 5, 1, 5, 20, 30, 25, 8, 1, 6, 30, 60, 75, 48, 13, 1, 7, 42, 105, 175, 168, 91, 21, 1, 8, 56, 168, 350, 448, 364, 168, 34, 1, 9, 72, 252, 630, 1008, 1092, 756, 306, 55, 1, 10, 90, 360, 1050, 2016, 2730, 2520, 1530, 550, 89
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+1) and n-th alternating row sum is F(n-1).
A094436 is jointly generated with A094437 as a triangular array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x) = u(n-1,x) + x*v(n-1,x) and v(n,x) = x*u(n-1,x) + (x+1)*v(n-1,x). See the Mathematica section. - Clark Kimberling, Feb 26 2012
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 26 2012
This sequence gives the coefficients of the Jensen polynomials (increasing powers of x) for the sequence {A000045(k)}{k >= 0} of degree n with shift 1. Here the definition of Jensen polynomials of degree n and shift m of an arbitrary real sequence {s(k)}{k >= 0} is used: J(s,m;n,x) := Sum_{j=0..n} binomial(n,j)*s(j + m)*x^j, This definition is used by Griffin et al. with a different notation. - Wolfdieter Lang, Jun 25 2019

Examples

			First four rows:
  1
  1 1
  1 2 2
  1 3 6 3
Sum = 1+3+6+3=13=F(7); alt.Sum = 1-3+6-3=1=F(2).
T(3,2)=F(3)C(3,2)=2*3=6.
From _Philippe Deléham_, Mar 26 2012: (Start)
(1, 0, 0, 1, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, ...) begins :
  1
  1, 0
  1, 1, 0
  1, 2, 2, 0
  1, 3, 6, 3, 0
  1, 4, 12, 12, 5, 0
  1, 5, 20, 30, 25, 8, 0
  1, 6, 30, 60, 75, 48, 13, 0 . (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Fibonacci(k+1)* Binomial(n,k) ))); # G. C. Greubel, Jul 11 2019
  • Magma
    [Fibonacci(k+1)*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 11 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A094436 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A094437 *)
    (* Second program *)
    Table[Fibonacci[k+1]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 11 2019 *)
  • PARI
    T(n,k) = fibonacci(k+1)*binomial(n,k); \\ G. C. Greubel, Jul 11 2019
    
  • Sage
    [[fibonacci(k+1)*binomial(n,k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 11 2019
    

Formula

T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 26 2012
G.f. (-1+x)/(-1+2*x+x*y-x^2*y+x^2*y^2-x^2). - R. J. Mathar, Aug 11 2015
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+1).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+1).
Sum_{k=0..n} (-1)^k*T(n,k) = Fibonacci(n-1). (End)

Extensions

Offset set to 0 by Alois P. Heinz, Aug 11 2015

A094435 Triangular array read by rows: T(n,k) = Fibonacci(k)*C(n,k), k = 1...n; n>=1.

Original entry on oeis.org

1, 2, 1, 3, 3, 2, 4, 6, 8, 3, 5, 10, 20, 15, 5, 6, 15, 40, 45, 30, 8, 7, 21, 70, 105, 105, 56, 13, 8, 28, 112, 210, 280, 224, 104, 21, 9, 36, 168, 378, 630, 672, 468, 189, 34, 10, 45, 240, 630, 1260, 1680, 1560, 945, 340, 55, 11, 55, 330, 990, 2310, 3696, 4290, 3465, 1870, 605, 89
Offset: 1

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n) and n-th alternating row sum is F(n).

Examples

			First few rows:
  1;
  2   1;
  3   3   2;
  4   6   8   3;
  5, 10, 20, 15,  5;
  6, 15, 40, 45, 30, 8;
		

Crossrefs

Programs

  • GAP
    Flat(List([1..12], n-> List([1..n], k-> Binomial(n,k)*Fibonacci(k) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(binomial(n,k)*fibonacci(k), k=1..n), n=1..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[k]*Binomial[n, k], {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k);
    for(n=1,12, for(k=1,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k).
Sum_{k=1..n} binomial(n,k)*Fibonacci(k) = Fibonacci(2*n).
Sum_{k=1..n} (-1)^(k-1)*binomial(n,k)*Fibonacci(k) = Fibonacci(n). (End)

A094437 Triangular array T(n,k) = Fibonacci(k+2)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 9, 5, 1, 8, 18, 20, 8, 1, 10, 30, 50, 40, 13, 1, 12, 45, 100, 120, 78, 21, 1, 14, 63, 175, 280, 273, 147, 34, 1, 16, 84, 280, 560, 728, 588, 272, 55, 1, 18, 108, 420, 1008, 1638, 1764, 1224, 495, 89, 1, 20, 135, 600, 1680, 3276, 4410, 4080, 2475, 890
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+2) and n-th alternating row sum is -F(n-2).
A094437 is jointly generated with A094436 as a triangular array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+x*v(n-1)x and v(n,x)=x*u(n-1,x)+(x+1)*v(n-1,x). See the Mathematica section. [Clark Kimberling, Feb 26 2012]
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 28 2012

Examples

			First four rows:
  1;
  1 2;
  1 4 3;
  1 6 9 5;
sum = 1+6+9+5=21=F(8); alt.sum = 1-6+9-5=-1=-F(1).
T(3,2)=F(4)*C(3,2)=3*3=9.
From _Philippe Deléham_, Apr 28 2012: (Start)
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1/2, -1/2, 0, 0, ...) begins :
  1;
  1, 0;
  1, 2,  0;
  1, 4,  3,  0;
  1, 6,  9,  5, 0;
  1, 8, 18, 20, 8, 0; . (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+2) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A094436 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A094437 *)
    (* Second program *)
    Table[Fibonacci[k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k+2);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From Philippe Deléham, Apr 28 2012: (Start)
As DELTA-triangle T(n,k):
G.f.: (1-x-y*x+2*y*x^2-y^2*x^2)/(1-2*x-y*x+x^2+y*x^2-y^2*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = 1, T(2,1) = 2, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n, k)*Fibonacci(k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2).
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = Fibonacci(n-2). (End)

A094442 Triangular array T(n,k) = Fibonacci(n+2-k)*C(n,k), 0 <= k <= n.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 9, 6, 1, 8, 20, 18, 8, 1, 13, 40, 50, 30, 10, 1, 21, 78, 120, 100, 45, 12, 1, 34, 147, 273, 280, 175, 63, 14, 1, 55, 272, 588, 728, 560, 280, 84, 16, 1, 89, 495, 1224, 1764, 1638, 1008, 420, 108, 18, 1, 144, 890, 2475, 4080, 4410, 3276, 1680, 600, 135, 20, 1
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Triangle of coefficients of polynomials v(n,x) jointly generated with A094441; see the Formula section.
Column 1: Fibonacci numbers, A000045
Row sums: even-indexed Fibonacci numbers
Alternating row sum: signed Fibonacci numbers
For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 02 2012

Examples

			First five rows:
  1;
  2,  1;
  3,  4,  1;
  5,  9,  6, 1;
  8, 20, 18, 8, 1;
First three polynomials v(n,x): 1, 2 + x, 3 + 4x + x^2.
From _Philippe Deléham_, Apr 02 2012: (Start)
(0, 2, -1/2, -1/2, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, ...) begins:
  1;
  0, 1;
  0, 2,  1;
  0, 3,  4,  1;
  0, 5,  9,  6, 1;
  0, 8, 20, 18, 8, 1. (End)
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+2) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+2): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(n-k+2)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A094441 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A094442 *)
    (* Second program *)
    Table[Fibonacci[n-k+2]*Binomial[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+2);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+2) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

Let u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + (x+1)*v(n-1, x), where u(1,x)=1, v(1,x)=1 then the coefficients of the polynomials of v(n,x) produce this sequence.
T(n,k) = T(n-1, k) + 2*T(n-1,k-1) + T(n-2,k) - T(n-2,k-1) - T(n-2,k-2), T(1,0) = T(2,1) = 1, T(2,0) = 2 and T(n,k) = 0 if k < 0 or if k >= n. - Philippe Deléham, Apr 02 2012
From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+2).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+2)
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = (-1)^n * Fibonacci(n-2). (End)

A094438 Triangular array T(n,k) = Fibonacci(k+3)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

2, 2, 3, 2, 6, 5, 2, 9, 15, 8, 2, 12, 30, 32, 13, 2, 15, 50, 80, 65, 21, 2, 18, 75, 160, 195, 126, 34, 2, 21, 105, 280, 455, 441, 238, 55, 2, 24, 140, 448, 910, 1176, 952, 440, 89, 2, 27, 180, 672, 1638, 2646, 2856, 1980, 801, 144, 2, 30, 225, 960, 2730, 5292, 7140, 6600, 4005, 1440, 233
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+3) and n-th alternating row sum is F(n-3).

Examples

			First few rows:
  2;
  2   3;
  2   6   5;
  2   9  15   8;
  2, 12, 30, 32, 13;
  2, 15, 50, 80, 65, 21;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(k+3) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+3)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[k+3]Binomial[n,k],{n,0,12},{k,0,n}]//Flatten (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k+3);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n,k)*Fibonacci(k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = Fibonacci(n-3). (End)

A094439 Triangular array T(n,k) = Fibonacci(k+4)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

3, 3, 5, 3, 10, 8, 3, 15, 24, 13, 3, 20, 48, 52, 21, 3, 25, 80, 130, 105, 34, 3, 30, 120, 260, 315, 204, 55, 3, 35, 168, 455, 735, 714, 385, 89, 3, 40, 224, 728, 1470, 1904, 1540, 712, 144, 3, 45, 288, 1092, 2646, 4284, 4620, 3204, 1296, 233, 3, 50, 360, 1560, 4410, 8568, 11550, 10680, 6480, 2330, 377
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Comments

Let F(n) denote the n-th Fibonacci number (A000045). Then n-th row sum of T is F(2n+4) and n-th alternating row sum is -F(n-4).

Examples

			First few rows:
  3;
  3,  5;
  3, 10,  8;
  3, 15, 24,  13;
  3, 20, 48,  52,  21;
  3, 25, 80, 130, 105, 34;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)* Fibonacci(k+4) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(k+4): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat); seq(seq(fibonacci(k+4)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[k+4]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(k+4);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(k+4) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n, k) = binomial(n,k)*Fibonacci(k+4).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+4).
Sum_{k=0..n} (-1)^(k+1) * T(n,k) = Fibonacci(n-4). (End)

A094443 Triangular array T(n,k) = Fibonacci(n+3-k)*C(n,k), k=0..n, n>=0.

Original entry on oeis.org

2, 3, 2, 5, 6, 2, 8, 15, 9, 2, 13, 32, 30, 12, 2, 21, 65, 80, 50, 15, 2, 34, 126, 195, 160, 75, 18, 2, 55, 238, 441, 455, 280, 105, 21, 2, 89, 440, 952, 1176, 910, 448, 140, 24, 2, 144, 801, 1980, 2856, 2646, 1638, 672, 180, 27, 2, 233, 1440, 4005, 6600, 7140, 5292, 2730, 960, 225, 30, 2
Offset: 0

Views

Author

Clark Kimberling, May 03 2004

Keywords

Examples

			First few rows:
   2;
   3,  2;
   5,  6,  2;
   8, 15,  9,  2;
  13, 32, 30, 12,  2;
  21, 65, 80, 50, 15, 2;
		

Crossrefs

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+3) ))); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n,k)*Fibonacci(n-k+3): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    with(combinat): seq(seq(fibonacci(n-k+3)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Table[Fibonacci[n-k+3]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
  • PARI
    T(n,k) = binomial(n,k)*fibonacci(n-k+3);
    for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [[binomial(n,k)*fibonacci(n-k+3) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
    

Formula

From G. C. Greubel, Oct 30 2019: (Start)
T(n,k) = binomial(n,k)*Fibonacci(n-k+3).
Sum_{k=0..n} T(n,k) = Fibonacci(2*n+3).
Sum_{k=0..n} (-1)^k * T(n,k) = (-1)^n * Fibonacci(n-3). (End)
Showing 1-10 of 16 results. Next