A010049
Second-order Fibonacci numbers.
Original entry on oeis.org
0, 1, 1, 3, 5, 10, 18, 33, 59, 105, 185, 324, 564, 977, 1685, 2895, 4957, 8462, 14406, 24465, 41455, 70101, 118321, 199368, 335400, 563425, 945193, 1583643, 2650229, 4430290, 7398330, 12342849, 20573219, 34262337, 57013865, 94800780, 157517532, 261545777
Offset: 0
- D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 83.
- Cornelius Gerrit Lekkerkerker, Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci, Simon Stevin, Vol. 29 (1952), pp. 190-195.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Carlos A. Rico A. and Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
- T. Amdeberhan and M. B. Can, M. Jensen, Divisors and specializations of Lucas polynomials, arXiv preprint arXiv:1406.0432 [math.CO], 2014.
- Kálmán Liptai, László Németh, Tamás Szakács, and László Szalay, On certain Fibonacci representations, arXiv:2403.15053 [math.NT], 2024. See p. 2.
- Mengmeng Liu and Andrew Yezhou Wang, The Number of Designated Parts in Compositions with Restricted Parts, J. Int. Seq., Vol. 23 (2020), Article 20.1.8.
- Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018.
- Tamás Szakács, Linear recursive sequences and factorials, Ph. D. Thesis, Univ. Debrecen (Hungary, 2024). See pp. 2, 50, 57.
- Loïc Turban, Lattice animals on a staircase and Fibonacci numbers, arXiv:cond-mat/0011038 [cond-mat.stat-mech], 2000; J. Phys. A 33 (2000) 2587-2595.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
-
a:=List([0..40],n->Sum([0..n-1],k->(k+1)*Binomial(n-k-1,k)));; Print(a); # Muniru A Asiru, Dec 31 2018
-
a010049 n = a010049_list !! n
a010049_list = uncurry c $ splitAt 1 a000045_list where
c us (v:vs) = (sum $ zipWith (*) us (1 : reverse us)) : c (v:us) vs
-- Reinhard Zumkeller, Nov 01 2013
-
[((2*n+3)*Fibonacci(n)-n*Fibonacci(n-1))/5: n in [0..40]]; // Vincenzo Librandi, Dec 31 2018
-
with(combinat): A010049 := proc(n) options remember; if n <= 1 then n else A010049(n-1)+A010049(n-2)+fibonacci(n-2); fi; end;
-
CoefficientList[Series[(z - z^2)/(z^2 + z - 1)^2, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
CoefficientList[Series[x (1 - x) / (1 - x - x^2)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Jun 11 2013 *)
LinearRecurrence[{2, 1, -2, -1}, {0, 1, 1, 3}, 38] (* Amiram Eldar, Jan 11 2020 *)
-
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,-2,1,2]^n*[0;1;1;3])[1,1] \\ Charles R Greathouse IV, Jul 20 2016
-
def A010049():
a, b, c, d = 0, 1, 1, 3
while True:
yield a
a, b, c, d = b, c, d, 2*(d-b)+c-a
a = A010049(); [next(a) for i in range(38)] # Peter Luschny, Nov 20 2013
-
def A010049(n): return (1/5)*(n*lucas_number2(n-1, 1, -1) + 3*fibonacci(n))
[A010049(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022
A367211
Triangular array read by rows: T(n, k) = binomial(n, k) * A000129(n - k) for 0 <= k < n.
Original entry on oeis.org
1, 2, 2, 5, 6, 3, 12, 20, 12, 4, 29, 60, 50, 20, 5, 70, 174, 180, 100, 30, 6, 169, 490, 609, 420, 175, 42, 7, 408, 1352, 1960, 1624, 840, 280, 56, 8, 985, 3672, 6084, 5880, 3654, 1512, 420, 72, 9, 2378, 9850, 18360, 20280, 14700, 7308, 2520, 600, 90, 10
Offset: 1
First nine rows:
[n\k] 0 1 2 3 4 5 6 7 8
[1] 1;
[2] 2 2;
[3] 5 6 3;
[4] 12 20 12 4;
[5] 29 60 50 20 5;
[6] 70 174 180 100 30 6;
[7] 169 490 609 420 175 42 7;
[8] 408 1352 1960 1624 840 280 56 8;
[9] 985 3672 6084 5880 3654 1512 420 72 9;
.
Row 4 represents the polynomial p(4,x) = 12 + 20 x + 12 x^2 + 4 x^3, so that (T(4,k)) = (12, 20, 12, 4), k = 0..3.
Cf.
A000129 (column 1, Pell numbers),
A361732 (column 2),
A000027 (T(n,n-1)),
A007070 (row sums, p(n,1)),
A077957 (alternating row sums, p(n,-1)),
A081179 (p(n,2)),
A077985 (p(n,-2)),
A081180 (p(n,3)),
A007070 (p(n,-3)),
A081182 (p(n,4)),
A094440,
A367208,
A367209,
A367210.
-
P := proc(n) option remember; ifelse(n <= 1, n, 2*P(n - 1) + P(n - 2)) end:
T := (n, k) -> P(n - k) * binomial(n, k):
for n from 1 to 9 do [n], seq(T(n, k), k = 0..n-1) od;
# (after Werner Schulte) Peter Luschny, Nov 24 2023
-
p[1, x_] := 1; p[2, x_] := 2 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
(* Or: *)
T[n_, k_] := Module[{P},
P[m_] := P[m] = If[m <= 1, m, 2*P[m - 1] + P[m - 2]];
P[n - k] * Binomial[n, k] ];
Table[T[n, k], {n, 1, 9}, {k, 0, n - 1}] (* Peter Luschny, Mar 07 2025 *)
A367208
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2.
Original entry on oeis.org
1, 1, 3, 2, 5, 8, 3, 13, 19, 21, 5, 25, 59, 65, 55, 8, 50, 137, 231, 210, 144, 13, 94, 316, 623, 834, 654, 377, 21, 175, 677, 1615, 2545, 2859, 1985, 987, 34, 319, 1411, 3859, 7285, 9691, 9451, 5911, 2584, 55, 575, 2849, 8855, 19115, 30245, 35105, 30407, 17345, 6765
Offset: 1
First ten rows:
1
1 3
2 5 8
3 13 19 21
5 25 59 65 55
8 50 137 231 210 144
13 94 316 623 834 654 377
21 175 677 1615 2545 2859 1985 987
34 319 1411 3859 7285 9691 9451 5911 2584
55 575 2849 8855 19115 30245 35105 30407 17345 6765
Row 4 represents the polynomial p(4,x) = 3 + 13*x + 19*x^2 + 21*x^3, so (T(4,k)) = (3,13,19,21), k=0..3.
Cf.
A000045 (column 1),
A001906 (T(n,n-1)),
A001353 (row sums, p(n,1)),
A077985 (alternating row sums, p(n,-1)),
A190974 (p(n,2)),
A004254 (p(n,-2)),
A190977 (p(n,-3)),
A094440,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300.
-
p[1, x_] := 1; p[2, x_] := 1 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367209
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - x - x^2.
Original entry on oeis.org
1, 1, 4, 2, 7, 15, 3, 18, 38, 56, 5, 35, 116, 186, 209, 8, 70, 273, 650, 859, 780, 13, 132, 629, 1777, 3366, 3821, 2911, 21, 246, 1352, 4600, 10410, 16556, 16556, 10864, 34, 449, 2820, 11024, 29770, 56874, 78504, 70356, 40545, 55, 810, 5701, 25306, 78324
Offset: 1
First nine rows:
1
1 4
2 7 15
3 18 38 56
5 35 116 186 209
8 70 273 650 859 780
13 132 629 1777 3366 3821 2911
21 246 1352 4600 10410 16556 16556 10864
34 449 2820 11024 29770 56874 78504 70356 405459
Row 4 represents the polynomial p(4,x) = 3 + 18*x + 38*x^2 + 56*x^3, so (T(4,k)) = (3,18,38,56), k=0..3.
Cf.
A000045 (column 1),
A001353 (T(n,n-1)),
A004254 (row sums, p(n,1)),
A006190 (alternating row sums, p(n,-1)),
A094440,
A367208,
A367210,
A367211,
A367297,
A367298,
A367299,
A367300.
-
p[1, x_] := 1; p[2, x_] := 1 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367210
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 1 + 5x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >=3, where u = p(2,x), v = 1 - x - x^2.
Original entry on oeis.org
1, 1, 5, 2, 9, 24, 3, 23, 63, 115, 5, 45, 191, 397, 551, 8, 90, 453, 1381, 2358, 2640, 13, 170, 1044, 3807, 9226, 13482, 12649, 21, 317, 2249, 9865, 28785, 58513, 75061, 60605, 34, 579, 4695, 23703, 82485, 202887, 357567, 409779, 290376, 55, 1045, 9501
Offset: 1
First eight rows:
1
1 5
2 9 24
3 23 63 115
5 45 191 397 551
8 90 453 1381 2358 2640
13 170 1044 3807 9226 13482 12649
21 317 2249 9865 28785 58513 75061 60605
Row 4 represents the polynomial p(4,x) = 3 + 23 x + 63 x^2 + 115 x^3, so that (T(4,k)) = (3,23,63,115), k-0..3.
Cf.
A000045 (column 1),
A004254 (T(n,n-1)),
A001109 (row sums p(n,1)),
A001076 (alternating row sums, p(n,-1)),
A094440,
A367208,
A367209,
A367211,
A367297,
A367298,
A367299,
A367300.
-
p[1, x_] := 1; p[2, x_] := 1 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A094441
Triangular array T(n,k) = Fibonacci(n+1-k)*C(n,k), 0 <= k <= n.
Original entry on oeis.org
1, 1, 1, 2, 2, 1, 3, 6, 3, 1, 5, 12, 12, 4, 1, 8, 25, 30, 20, 5, 1, 13, 48, 75, 60, 30, 6, 1, 21, 91, 168, 175, 105, 42, 7, 1, 34, 168, 364, 448, 350, 168, 56, 8, 1, 55, 306, 756, 1092, 1008, 630, 252, 72, 9, 1, 89, 550, 1530, 2520, 2730, 2016, 1050, 360, 90, 10, 1
Offset: 0
First five rows:
1;
1, 1;
2, 2, 1;
3, 6, 3, 1;
5, 12, 12, 4, 1;
First three polynomials v(n,x): 1, 1 + x, 2 + 2x + x^2.
From _Philippe Deléham_, Mar 27 2012: (Start)
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, 0, 1, 0, 0, 0, ...) begins:
1;
0, 1;
0, 1, 1;
0, 2, 2, 1;
0, 3, 6, 3, 1;
0, 5, 12, 12, 4, 1. (End)
-
Flat(List([0..12], n-> List([0..n], k-> Binomial(n,k)*Fibonacci(n-k+1) ))); # G. C. Greubel, Oct 30 2019
-
[Binomial(n,k)*Fibonacci(n-k+1): k in [0..n], n in [0..12]]; // G. C. Greubel, Oct 30 2019
-
with(combinat); seq(seq(fibonacci(n-k+1)*binomial(n,k), k=0..n), n=0..12); # G. C. Greubel, Oct 30 2019
-
(* First program *)
u[1, x_] := 1; v[1, x_] := 1; z = 16;
u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
v[n_, x_] := u[n - 1, x] + (x + 1)*v[n - 1, x];
Table[Expand[u[n, x]], {n, 1, z/2}]
Table[Expand[v[n, x]], {n, 1, z/2}]
cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
TableForm[cu]
Flatten[%] (* A094441 *)
Table[Expand[v[n, x]], {n, 1, z}]
cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
TableForm[cv]
Flatten[%] (* A094442 *)
(* Next program outputs polynomials having coefficients T(n,k) *)
g[x_, n_] := Numerator[(-1)^(n + 1) Factor[D[(x + 1)/(1 - x - x^2), {x, n}]]]
Column[Expand[Table[g[x, n]/n!, {n, 0, 12}]]] (* Clark Kimberling, Oct 22 2019 *)
(* Second program *)
Table[Fibonacci[n-k+1]*Binomial[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Oct 30 2019 *)
-
T(n,k) = binomial(n,k)*fibonacci(n-k+1);
for(n=0,12, for(k=0,n, print1(T(n,k), ", "))) \\ G. C. Greubel, Oct 30 2019
-
[[binomial(n,k)*fibonacci(n-k+1) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Oct 30 2019
A367297
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 3*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 3, 5, 10, 8, 12, 34, 38, 21, 29, 104, 161, 130, 55, 70, 305, 592, 654, 420, 144, 169, 866, 2023, 2788, 2436, 1308, 377, 408, 2404, 6556, 10810, 11756, 8574, 3970, 987, 985, 6560, 20446, 39164, 50779, 46064, 28987, 11822, 2584, 2378, 17663, 61912, 134960, 202630, 218717, 171232, 95078, 34690, 6765
Offset: 1
First eight rows:
1
2 3
5 10 8
12 34 38 21
29 104 161 130 55
70 305 592 654 420 144
169 866 2023 2788 2436 1308 377
408 2404 6556 10810 11756 8574 3970 987
Row 4 represents the polynomial p(4,x) = 12 + 34*x + 38*x^2 + 21*x^3, so (T(4,k)) = (12,34,38,21), k=0..3.
Cf.
A000129 (column 1),
A001906 (p(n,n-1)),
A107839 (row sums, p(n,1)),
A077925 (alternating row sums, p(n,-1)),
A023000 (p(n,2)),
A001076 (p(n,-2)),
A186446 (p(n,-3)),
A094440,
A367208,
A367209,
A367210,
A367211,
A367298,
A367299,
A367300,
A367301.
-
p[1, x_] := 1; p[2, x_] := 2 + 3 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367298
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 4*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 4, 5, 14, 15, 12, 48, 76, 56, 29, 148, 326, 372, 209, 70, 436, 1212, 1904, 1718, 780, 169, 1242, 4169, 8228, 10191, 7642, 2911, 408, 3456, 13576, 32176, 49992, 51488, 33112, 10864, 985, 9448, 42492, 117304, 218254, 281976, 249612, 140712, 40545
Offset: 1
First eight rows:
1
2 4
5 14 15
12 48 76 56
29 148 326 372 209
70 436 1212 1904 1718 780
169 1242 4169 8228 10191 7642 2911
408 3456 13576 32176 49992 51488 33112 10864
Row 4 represents the polynomial p(4,x) = 12 + 48*x + 76*x^2 + 56*x^3, so (T(4,k)) = (12,48,76,56), k=0..3.
Cf.
A000129 (column 1),
A001353 (p(n,n-1)),
A154244 (row sums, p(n,1)),
A002605 (alternating row sums, p(n,-1)),
A190989 (p(n,2)),
A005668 (p(n,-2)),
A190869 (p(n,-3)),
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367299,
A367300,
A367301.
-
p[1, x_] := 1; p[2, x_] := 2 + 4 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367299
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 2 + 5*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 2, 5, 5, 18, 24, 12, 62, 126, 115, 29, 192, 545, 794, 551, 70, 567, 2040, 4114, 4716, 2640, 169, 1618, 7047, 17940, 28420, 26964, 12649, 408, 4508, 23020, 70582, 140988, 185122, 150122, 60605, 985, 12336, 72222, 258492, 620379, 1027368, 1156155, 819558, 290376
Offset: 1
First eight rows:
1
2 5
5 18 24
12 62 126 115
29 192 545 794 551
70 567 2040 4114 4716 2640
169 1618 7047 17940 28420 26964 12649
408 4508 23020 70582 140988 185122 150122 60605
Row 4 represents the polynomial p(4,x) = 12 + 62*x + 126*x^2 + 115*x^3, so (T(4,k)) = (12,62,126,115), k=0..3.
Cf.
A000129 (column 1);
A004254 (p(n,n-1));
A186446 (row sums, p(n,1));
A007482 (alternating row sums, p(n,-1));
A041025 (p(n,-2));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367300.
-
p[1, x_] := 1; p[2, x_] := 2 + 5 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
A367300
Triangular array T(n,k), read by rows: coefficients of strong divisibility sequence of polynomials p(1,x) = 1, p(2,x) = 3 + 2*x, p(n,x) = u*p(n-1,x) + v*p(n-2,x) for n >= 3, where u = p(2,x), v = 1 - 2*x - x^2.
Original entry on oeis.org
1, 3, 2, 10, 10, 3, 33, 46, 22, 4, 109, 194, 131, 40, 5, 360, 780, 678, 296, 65, 6, 1189, 3036, 3228, 1828, 581, 98, 7, 3927, 11546, 14514, 10100, 4194, 1036, 140, 8, 12970, 43150, 62601, 51664, 26479, 8604, 1722, 192, 9, 42837, 159082, 261598, 249720, 152245, 61318, 16248, 2712, 255, 10
Offset: 1
First eight rows:
1
3 2
10 10 3
33 46 22 4
109 194 131 40 5
360 780 678 296 65 6
1189 3036 3228 1828 581 98 7
3927 11546 14514 10100 4194 1036 140 8
Row 4 represents the polynomial p(4,x) = 33 + 46*x + 22*x^2 + 4*x^3, so (T(4,k)) = (33,46,22,4), k=0..3.
Cf.
A006190 (column 1);
A000027 (p(n,n-1));
A107839 (row sums, p(n,1));
A001045 (alternating row sums, p(n,-1));
A030240 (p(n,2));
A039834 (signed Fibonacci numbers, p(n,-2));
A016130 (p(n,3));
A225883 (p(n,-3));
A099450 (p(n,-4));
A094440,
A367208,
A367209,
A367210,
A367211,
A367297,
A367298,
A367299.
-
p[1, x_] := 1; p[2, x_] := 3 + 2 x; u[x_] := p[2, x]; v[x_] := 1 - 2 x - x^2;
p[n_, x_] := Expand[u[x]*p[n - 1, x] + v[x]*p[n - 2, x]]
Grid[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Flatten[Table[CoefficientList[p[n, x], x], {n, 1, 10}]]
Showing 1-10 of 34 results.
Comments